Publications by authors named "Harini Chakravarthy"

Three-dimensional tissue-structural relationships are not well captured by typical thin-section histology, posing challenges for the study of tissue physiology and pathology. Moreover, while recent progress has been made with intact methods for clearing, labeling, and imaging whole organs such as the mature brain, these approaches are generally unsuitable for soft, irregular, and heterogeneous tissues that account for the vast majority of clinical samples and biopsies. Here we develop a biphasic hydrogel methodology, which along with automated analysis, provides for high-throughput quantitative volumetric interrogation of spatially-irregular and friable tissue structures.

View Article and Find Full Text PDF

Insulin-producing pancreatic β cells in mice can slowly regenerate from glucagon-producing α cells in settings like β cell loss, but the basis of this conversion is unknown. Moreover, it remains unclear if this intra-islet cell conversion is relevant to diseases like type 1 diabetes (T1D). We show that the α cell regulators Aristaless-related homeobox (Arx) and DNA methyltransferase 1 (Dnmt1) maintain α cell identity in mice.

View Article and Find Full Text PDF

β-Cell proliferation and expansion during pregnancy are crucial for maintaining euglycemia in response to increased metabolic demands placed on the mother. Prolactin and placental lactogen signal through the prolactin receptor (PRLR) and contribute to adaptive β-cell responses in pregnancy; however, the in vivo requirement for PRLR signaling specifically in maternal β-cell adaptations remains unknown. We generated a floxed allele of Prlr, allowing conditional loss of PRLR in β-cells.

View Article and Find Full Text PDF

Here we present the Transcription Factor Encyclopedia (TFe), a new web-based compendium of mini review articles on transcription factors (TFs) that is founded on the principles of open access and collaboration. Our consortium of over 100 researchers has collectively contributed over 130 mini review articles on pertinent human, mouse and rat TFs. Notable features of the TFe website include a high-quality PDF generator and web API for programmatic data retrieval.

View Article and Find Full Text PDF

The rapid formation of numerous tissues during development is highly dependent on the swift activation of key developmental regulators. Recent studies indicate that many key regulatory genes are repressed in embryonic stem cells (ESCs), yet poised for rapid activation due to the presence of both activating (H3K4 trimethylation) and repressive (H3K27 trimethylation) histone modifications (bivalent genes). However, little is known about bivalent gene regulation.

View Article and Find Full Text PDF

There is a pressing need for new therapies to treat pancreatic cancer. In principle, this could be achieved by taking advantage of signaling pathways that are active in tumor, but not normal, cells. The work described in this study set out to determine whether the activities of three enhancers, which have been reported to be highly responsive to activated ras, differ in pancreatic tumor cells that express wild-type versus constitutively active mutant forms of K-ras.

View Article and Find Full Text PDF

Sox2 and Oct-3/4 function as master regulators during mammalian embryogenesis, where they are believed to regulate a critical gene regulatory network by cooperatively binding to DNA regulatory regions composed of adjacent HMG and POU motifs (HMG/POU cassettes). Previous studies have identified seven genes that contain highly active HMG/POU cassettes (referred to as Sox2:Oct-3/4 target genes). Importantly, nearly all known Sox2:Oct-3/4 target genes appear to be essential for embryogenesis.

View Article and Find Full Text PDF

Recent studies have identified large sets of genes in embryonic stem and embryonal carcinoma cells that are associated with the transcription factors Sox2 and Oct-3/4. Other studies have shown that Sox2 and Oct-3/4 work together cooperatively to stimulate the transcription of their own genes as well as a network of genes required for embryogenesis. Moreover, small changes in the levels of Sox2:Oct-3/4 target genes alter the fate of stem cells.

View Article and Find Full Text PDF