The complex kinetics of disease-related amyloid aggregation of proteins such as α-Synuclein (α-Syn) in Parkinson's disease and Aβ42 in Alzheimer's disease include primary nucleation, amyloid fibril elongation and secondary nucleation. The latter can be a key accelerator of the aggregation process. It has been demonstrated that the chaperone domain BRICHOS can interfere with the secondary nucleation process of Aβ42.
View Article and Find Full Text PDFReversible and irreversible amyloids are two diverging cases of protein (mis)folding associated with the cross-β motif in the protein folding and aggregation energy landscape. Yet, the molecular origins responsible for the formation of reversible vs irreversible amyloids have remained unknown. Here we provide evidence at the atomic level of distinct folding motifs for irreversible and reversible amyloids derived from a single protein sequence: human lysozyme.
View Article and Find Full Text PDFThe binding affinity determination of protein-ligand complexes is a cornerstone of drug design. State-of-the-art techniques are limited by lengthy and expensive processes. Building upon our recently introduced novel screening method utilizing photochemically induced dynamic nuclear polarization (photo-CIDNP) NMR, we provide the methodological framework to determine binding affinities within 5-15 min using 0.
View Article and Find Full Text PDFAllostery is a fundamental mechanism of cellular homeostasis by intra-protein communication between distinct functional sites. It is an internal process of proteins to steer interactions not only with each other but also with other biomolecules such as ligands, lipids, and nucleic acids. In addition, allosteric regulation is particularly important in enzymatic activities.
View Article and Find Full Text PDFWhile nuclear magnetic resonance (NMR) is regarded as a reference in fragment-based drug design, its implementation in a high-throughput manner is limited by its lack of sensitivity resulting in long acquisition times and high micromolar sample concentrations. Several hyperpolarization approaches could, in principle, improve the sensitivity of NMR also in drug research. However, photochemically induced dynamic nuclear polarization (photo-CIDNP) is the only method that is directly applicable in aqueous solution and agile for scalable implementation using off-the-shelf hardware.
View Article and Find Full Text PDFMost experimental methods for structural biology proceed in vitro and therefore the contribution of the intracellular environment on protein structure and dynamics is absent. Studying proteins at atomic resolution in living mammalian cells has been elusive due to the lack of methodologies. In-cell nuclear magnetic resonance spectroscopy (in-cell NMR) is an emerging technique with the power to do so.
View Article and Find Full Text PDFGoverning function, half-life and subcellular localization, the 3D structure and dynamics of proteins are in nature constantly changing in a tightly regulated manner to fulfill the physiological and adaptive requirements of the cells. To find evidence for this hypothesis, we applied in-cell NMR to three folded model proteins and propose that the splitting of cross peaks constitutes an atomic fingerprint of distinct structural states that arise from multiple target binding co-existing inside mammalian cells. These structural states change upon protein loss of function or subcellular localisation into distinct cell compartments.
View Article and Find Full Text PDFRecent methodological advances in solution NMR allow the determination of multi-state protein structures and provide insights into structurally and dynamically correlated protein sites at atomic resolution. This is demonstrated in the present work for the well-studied PDZ2 domain of protein human tyrosine phosphatase 1E for which protein allostery had been predicted. Two-state protein structures were calculated for both the free form and in complex with the RA-GEF2 peptide using the exact nuclear Overhauser effect (eNOE) method.
View Article and Find Full Text PDFExact nuclear Overhauser enhancement (eNOE) yields highly accurate, ensemble averaged H-H distance restraints with an accuracy of up to 0.1 Å for the multi-state structure determination of proteins as well as for nuclear magnetic resonance molecular replacement (MR) to determine the structure of the protein-ligand interaction site in a time-efficient manner. However, in the latter application, the acquired eNOEs lack the obtainable precision of 0.
View Article and Find Full Text PDFRecent advances in the field of protein structure determination using liquid-state NMR enable the elucidation of multi-state protein conformations that can provide insight into correlated and non-correlated protein dynamics at atomic resolution. So far, NMR-derived multi-state structures were typically evaluated by means of visual inspection of structure superpositions, target function values that quantify the violation of experimented restraints and root-mean-square deviations that quantify similarity between conformers. As an alternative or complementary approach, we present here the use of a recently introduced structural correlation measure, PDBcor, that quantifies the clustering of protein states as an additional measure for multi-state protein structure analysis.
View Article and Find Full Text PDFAllostery and correlated motion are key elements linking protein dynamics with the mechanisms of action of proteins. Here, we present PDBCor, an automated and unbiased method for the detection and analysis of correlated motions from experimental multi-state protein structures. It uses torsion angle and distance statistics and does not require any structure superposition.
View Article and Find Full Text PDFCellular condensation of intrinsically disordered proteins (IDPs) through liquid-liquid phase separation (LLPS) allows dynamic compartmentalization and regulation of biological processes. The IDP tau, which promotes the assembly of microtubules and is hyperphosphorylated in Alzheimer's disease, undergoes LLPS in solution and on the surface of microtubules. Little is known, however, about the influence of tau phosphorylation on its ability to nucleate microtubule bundles in conditions of tau LLPS.
View Article and Find Full Text PDFProtein allostery is a phenomenon involving the long range coupling between two distal sites in a protein. In order to elucidate allostery at atomic resoluion on the ligand-binding WW domain of the enzyme Pin1, multistate structures were calculated from exact nuclear Overhauser effect (eNOE). In its free form, the protein undergoes a microsecond exchange between two states, one of which is predisposed to interact with its parent catalytic domain.
View Article and Find Full Text PDFAlzheimer's disease (AD) pathology precedes the onset of clinical symptoms by several decades. Thus, biomarkers are required to identify prodromal disease stages to allow for the early and effective treatment. The methoxy-X04-derivative BSC4090 is a fluorescent ligand which was designed to target neurofibrillary tangles in AD.
View Article and Find Full Text PDFA network of molecular chaperones is known to bind proteins ('clients') and balance their folding, function and turnover. However, it is often unclear which chaperones are critical for selective recognition of individual clients. It is also not clear why these key chaperones might fail in protein-aggregation diseases.
View Article and Find Full Text PDFThe microtubule-associated protein Tau promotes the polymerization of tubulin and modulates the function of microtubules. As a consequence of the dynamic nature of the Tau-tubulin interaction, the structural basis of this complex has remained largely elusive. By using NMR methods optimized for ligand-receptor interactions in combination with site-directed mutagenesis we demonstrate that the flanking domain downstream of the four microtubule-binding repeats of Tau binds competitively to a site on the α-tubulin surface.
View Article and Find Full Text PDFMicrotubule-associated proteins regulate microtubule dynamics, bundle actin filaments, and cross-link actin filaments with microtubules. In addition, aberrant interaction of the microtubule-associated protein Tau with filamentous actin is connected to synaptic impairment in Alzheimer's disease. Here we provide insight into the nature of interaction between Tau and actin filaments.
View Article and Find Full Text PDFPhosphorylation of the microtubule-associated protein Tau influences the assembly and stabilization of microtubules and is deregulated in several neurodegenerative diseases. The high flexibility of Tau, however, has prevented an atomic-level description of its phosphorylation-induced structural changes. Employing an extensive set of distance and orientational restraints together with a novel ensemble calculation approach, we determined conformational ensembles of Tau fragments in the non-phosphorylated state and, when phosphorylated at T231/S235 or T231/S235/S237/S238, four important sites of phosphorylation in Alzheimer disease.
View Article and Find Full Text PDFMicrotubules are regulated by microtubule-associated proteins. However, little is known about the structure of microtubule-associated proteins in complex with microtubules. Herein we show that the microtubule-associated protein Tau, which is intrinsically disordered in solution, locally folds into a stable structure upon binding to microtubules.
View Article and Find Full Text PDFThe structure, dynamic behavior, and spatial organization of microtubules are regulated by microtubule-associated proteins. An important microtubule-associated protein is the protein Tau, because its microtubule interaction is impaired in the course of Alzheimer's disease and several other neurodegenerative diseases. Here, we show that Tau binds to microtubules by using small groups of evolutionary conserved residues.
View Article and Find Full Text PDFTau protein plays an important role in neuronal physiology and Alzheimer's neurodegeneration. Its abilities to aggregate abnormally, to bind to microtubules (MTs), and to promote MT assembly are all influenced by phosphorylation. Phosphorylation of serine residues in the KXGS motifs of Tau's repeat domain, crucial for MT interactions and aggregation, is facilitated most efficiently by microtubule-associated protein/microtubule affinity-regulating kinases (MARKs).
View Article and Find Full Text PDF