The Foxi3 transcription factor, expressed in the neural plate border at the end of gastrulation, is necessary for the formation of posterior placodes and is thus important for ectodermal patterning. We have created two knock-in mouse lines expressing GFP or a tamoxifen-inducible Cre recombinase to show that Foxi3 is one of the earliest genes to label the border between the neural tube and epidermis, and that Foxi3-expressing neural plate border progenitors contribute primarily to cranial placodes and epidermis from the onset of expression, but not to the neural crest or neural tube lineages. By simultaneously knocking out Foxi3 in neural plate border cells and following their fates, we show that neural plate border cells lacking Foxi3 contribute to all four lineages of the ectoderm - placodes, epidermis, crest and neural tube.
View Article and Find Full Text PDFBackground: FOXI3 is a forkhead family transcription factor that is expressed in the progenitors of craniofacial placodes, epidermal placodes, and the ectoderm and endoderm of the pharyngeal arch region. Loss of Foxi3 in mice and pathogenic Foxi3 variants in dogs and humans cause a variety of craniofacial defects including absence of the inner ear, severe truncations of the jaw, loss or reduction in external and middle ear structures, and defects in teeth and hair.
Results: To allow for the identification, isolation, and lineage tracing of Foxi3-expressing cells in developing mice, we targeted the Foxi3 locus to create Foxi3 and Foxi3 mice.
Craniofacial microsomia (CFM; also known as Goldenhar syndrome), is a craniofacial developmental disorder of variable expressivity and severity with a recognizable set of abnormalities. These birth defects are associated with structures derived from the first and second pharyngeal arches, can occur unilaterally and include ear dysplasia, microtia, preauricular tags and pits, facial asymmetry and other malformations. The inheritance pattern is controversial, and the molecular etiology of this syndrome is largely unknown.
View Article and Find Full Text PDFThe mammalian middle ear comprises a chain of ossicles, the malleus, incus, and stapes that act as an impedance matching device during the transmission of sound from the tympanic membrane to the inner ear. These ossicles are derived from cranial neural crest cells that undergo endochondral ossification and subsequently differentiate into their final functional forms. Defects that occur during middle ear development can result in conductive hearing loss.
View Article and Find Full Text PDFBackground: The mammalian middle ear comprises a chain of three ossicles-the malleus, incus, and stapes-each of which has a unique morphology for efficiently transmitting sound information. In particular, the stapes, which is attached to the inner ear, is stirrup-shaped with a head and base connected by two crural arches, forming the stapedial foramen, through which the stapedial artery passes. However, how the stapes acquires this critical stirrup shape for association with the stapedial artery during development is not clear.
View Article and Find Full Text PDFDefects in the middle ear ossicles - malleus, incus and stapes - can lead to conductive hearing loss. During development, neural crest cells (NCCs) migrate from the dorsal hindbrain to specific locations in pharyngeal arch (PA) 1 and 2, to form the malleus-incus and stapes, respectively. It is unclear how migratory NCCs reach their proper destination in the PA and initiate mesenchymal condensation to form specific ossicles.
View Article and Find Full Text PDFThe mammalian inner ear is a complex organ responsible for balance and hearing. Sonic hedgehog (Shh), a member of the Hedgehog (Hh) family of secreted proteins, has been shown to play important roles in several aspects of inner ear development, including dorsoventral axial specification, cochlear elongation, tonotopic patterning, and hair cell differentiation. Hh proteins initiate a downstream signaling cascade by binding to the Patched 1 (Ptch1) receptor.
View Article and Find Full Text PDFSound frequency discrimination begins at the organ of Corti in mammals and the basilar papilla in birds. Both of these hearing organs are tonotopically organized such that sensory hair cells at the basal (proximal) end respond to high frequency sound, whereas their counterparts at the apex (distal) respond to low frequencies. Sonic hedgehog (Shh) secreted by the developing notochord and floor plate is required for cochlear formation in both species.
View Article and Find Full Text PDFBiochem Biophys Res Commun
March 2014
Pax3 mutations result in malformed inner ears in Splotch mutant mice and hearing loss in humans with Waardenburg's syndrome type I. In the inner ear, Pax3 is thought to be involved mainly in the development of neural crest. However, recent studies have shown that Pax3-expressing cells contribute extensively to multiple inner ear structures, some of which were considered to be derived from the otic epithelium.
View Article and Find Full Text PDF