Publications by authors named "Hari P R Mangunuru"

Herein, we disclose a facile synthetic strategy to access an important class of drug molecules that contain chiral 1,2-amino alcohol functionality utilizing highly effective ruthenium-catalyzed asymmetric transfer hydrogenation of unprotected α-ketoamines. Recently, the COVID-19 pandemic has caused a crisis of shortage of many important drugs, especially norepinephrine and epinephrine, for the treatment of anaphylaxis and hypotension because of the increased demand. Unfortunately, the existing technologies are not fulfilling the worldwide requirement due to the existing lengthy synthetic protocols that require additional protection and deprotection steps.

View Article and Find Full Text PDF

We report a new class of highly effective, benzooxaphosphole-based, water-soluble ligands in the application of Suzuki-Miyaura cross-coupling reactions for sterically hindered substrates in aqueous media. The catalytic activities of the coupling reactions were greatly enhanced by the addition of catalytic amounts of organic phase transfer reagents, such as tetraglyme and tetrabutylammonium bromide. The optimized general protocol can be conducted with a low catalyst load, thereby providing a practical solution for these reactions.

View Article and Find Full Text PDF

Metal-catalyzed cross-coupling reactions are extensively employed in both academia and industry for the synthesis of biaryl derivatives for applications to both medicine and material science. Application of these methods to prepare tetra--substituted biaryls leads to chiral atropisomeric products that introduces the opportunity to use catalyst-control to develop asymmetric cross-coupling procedures to access these important compounds. Asymmetric Pd-catalyzed Suzuki-Miyaura and Negishi cross-coupling reactions to form tetra--substituted biaryls were studied employing a collection of -chiral dihydrobenzooxaphosphole (BOP) and dihydrobenzoazaphosphole (BAP) ligands.

View Article and Find Full Text PDF

A new class of tunable heterophosphole dimeric ligands have been designed and synthesized. These ligands have enabled the first examples of Cu-catalyzed hydrogenation of 2-substituted-1-tetralones and related heteroaryl ketones dynamic kinetic resolution, simultaneously creating two contiguous stereogenic centers with up to >99 : 1 dr and 98 : 2 er. The ligand-Cu complexes were isolated and characterized by single crystal X-ray, and DFT calculations revealed a novel heteroligated dimeric copper hydride transition state.

View Article and Find Full Text PDF

Numerous synthetic methods for the continuous preparation of fine chemicals and active pharmaceutical ingredients (API's) have been reported in recent years resulting in a dramatic improvement in process efficiencies. Herein we report a highly efficient continuous synthesis of the antimalarial drug hydroxychloroquine (HCQ). Key improvements in the new process include the elimination of protecting groups with an overall yield improvement of 52% over the current commercial process.

View Article and Find Full Text PDF

Novel bidentate phosphine ligands BABIPhos featuring a biaryl bis-dihydrobenzooxaphosphole core are presented. Their synthesis was achieved via Pd-catalyzed reductive homocoupling of dihydrobenzooxaphosphole aryl triflates. An efficient route toward various analogues was also established, giving access to phosphines with different electronic and steric properties.

View Article and Find Full Text PDF

Enantioselective synthesis of α-aryl and α-heteroaryl piperidines is reported. The key step is an iridium-catalyzed asymmetric hydrogenation of substituted N-benzylpyridinium salts. High levels of enantioselectivity up to 99.

View Article and Find Full Text PDF

An Ir-catalyzed enantioselective hydrogenation of 2-alkyl-pyridines has been developed using ligand MeO-BoQPhos. High levels of enantioselectivities up to 93:7 er were obtained. The resulting enantioenriched piperidines can be readily converted into biologically interesting molecules such as the fused tricyclic structures 5, 6, and 7 in 99:1 er, providing a novel, concise synthetic route to this family of chiral piperidine-containing compounds.

View Article and Find Full Text PDF

Small molecular gelators are a class of compounds with potential applications for soft biomaterials. Low molecular weight hydrogelators are especially useful for exploring biomedical applications. Previously, we found that 4,6-O-benzylidene acetal protected D-glucose and D-glucosamine are well-suited as building blocks for the construction of low molecular weight gelators.

View Article and Find Full Text PDF

Diacetylene-containing glycolipids are a unique class of compounds that are able to self-assemble and form ordered supramolecular structures. Polymerizable diacetylene glycolipids that can function as low molecular weight gelators are particularly interesting molecules which can lead to stimuli-responsive smart materials. To discover efficient organogelators with built-in functionality that may be useful in sensing local environmental changes, we have synthesized a series of novel diacetylene-containing amide and urea derivatives using D-glucosamine as the starting material.

View Article and Find Full Text PDF

We report the synthesis and self-assembling properties of a new class of tripeptoids synthesized by a one-pot Ugi reaction from simple starting materials. Among the focused library of tripeptoids synthesized, several efficient low molecular weight gelators were obtained for aqueous DMSO and ethanol mixtures.

View Article and Find Full Text PDF

A general, efficient, and highly diastereoselective method for the synthesis of structurally and sterically diverse P-chiral phosphine oxides was developed. The method relies on sequential nucleophilic substitution on the versatile chiral phosphinyl transfer agent 1,3,2-benzoxazaphosphinine-2-oxide, which features enhanced and differentiated P-N and P-O bond reactivity toward nucleophiles. The reactivities of both bonds are fine-tuned to allow cleavage to occur even with sterically hindered nucleophiles under mild conditions.

View Article and Find Full Text PDF