Separation of Sm from a dilute solution via conventional solvent extraction is often plagued by emulsion and third phase formation. These problems can be overcome with functionalized magnetic nanoparticles that can capture the target species and be separated from the raffinae phase rapidly and efficiently on application of a magnetic field. Magentic silica nanoparticles (FeO/SiO) were synthesized by a modified Stöber method and functionalized with carboxylate (FeO/SiO/RCOONa) and phosphonate (FeO/SiO/RRPONa) groups to achieve high adsorption capacity and fast adsorption kinetics.
View Article and Find Full Text PDFHydrophobic self-assembly pairs diverse chemical precursors and simple formulation processes to access a vast array of functional colloids. Exploration of this design space, however, is stymied by lack of broadly general, high-throughput colloid characterization tools. Here, we show that a narrow structural subset of fluorescent, zwitterionic molecular rotors, dialkylaminostilbazolium sulfonates [DASS] with intermediate-length alkyl tails, fills this major analytical void by quantitatively sensing hydrophobic interfaces in microplate format.
View Article and Find Full Text PDFStimuli-responsive pickering emulsions have received considerable attention in recent years, and the utilization of temperature as a stimulus has been of particular interest. Previous efforts have led to responsive systems that enable the formation of stable emulsions at room temperature, which can subsequently be triggered to destabilize with an increase in temperature. The development of a thermoresponsive system that exhibits the opposite response, however, i.
View Article and Find Full Text PDFUsing fumed and spherical silica particles of similar hydrodynamic size, we investigated the effects of particle shape and inter-particle interactions on the formation, stability and rheology of bromohexadecane-in-water Pickering emulsions. The interparticle interactions were varied from repulsive to attractive by modifying the salt concentration in the aqueous phase. Optical microscope images revealed smaller droplet sizes for the fumed silica stabilized emulsions.
View Article and Find Full Text PDFWe investigate the use of particle hydrophilicity as a tool for emulsion destabilization in Triton-X-100-stabilized hexadecane-in-water emulsions. The hydrophilicity of the particles added to the aqueous phase was found to have a pronounced effect on the stability of the emulsion. Specifically, the addition of hydrophilic fumed silica particles to the aqueous phase resulted in coarsening of the emulsion droplets, with droplet flocculation observed at higher particle concentrations.
View Article and Find Full Text PDFAs a model for understanding how surfactant-stabilized emulsions respond to the addition of interacting and noninteracting particles, we investigated the response of dodecane-in-water emulsions stabilized by SDS (anionic), CTAB (cationic), and Triton X-100 (nonionic) surfactants to the addition of an aqueous suspension of negatively charged fumed silica particles. The stability of the emulsion droplets and the concentration of surfactants/particles at the oil-water interfaces are sensitive to surfactant-particle interactions, mixing conditions, and the particle concentration in the bulk. Addition of the particle suspension to the SDS-stabilized emulsions showed no effect on emulsion stability.
View Article and Find Full Text PDFWe use carboxyl-terminated, negatively charged, carbon black (CB) particles suspended in water to create CB-stabilized octane-in-water emulsions, and examine the consequences of adding aqueous anionic (SOS, SDS), cationic (OTAB, DTAB), and nonionic (Triton X-100) surfactant solutions to these emulsions. Depending upon the amphiphile's interaction with particles, interfacial activity, and bulk concentration, some CB particles get displaced from the octane-water interfaces and are replaced by surfactants. The emulsions remain stable through this exchange.
View Article and Find Full Text PDF