Lipid droplets (LDs) are the major sites of lipid and energy homeostasis. However, few LD biogenesis proteins have been identified. Using model microalga , we show that ABHD1, an α/β-hydrolase domain-containing protein, is localized to the LD surface and stimulates LD formation through two actions: one enzymatic and one structural.
View Article and Find Full Text PDFThree dimensions of chromatographic separation, using split-flow two-dimensional liquid chromatography (SF-2D-LC) with two parallel second dimensions, LC × 2LC, combined with quadruple parallel mass spectrometry (LC3MS4) is demonstrated for analysis of NIST SRM 1849a adult/infant formula. The first dimension, D, was a conventional non-aqueous reversed-phase (NARP) HPLC separation using two C18 columns in series, followed by detection using an ultraviolet (UV) detector, a fluorescence detector (FLD), with flow then split to a corona charged aerosol detector (CAD), and then dual parallel mass spectrometry (MS), conducted in atmospheric pressure photoionization (APPI) and electrospray ionization (ESI) modes. The first second dimension, D(1), UHPLC was conducted on a 50.
View Article and Find Full Text PDFLipids are produced through a dynamic metabolic network involving branch points, cycles, reversible reactions, parallel reactions in different subcellular compartments, and distinct pools of the same lipid class involved in different parts of the network. For example, diacylglycerol (DAG) is a biosynthetic and catabolic intermediate of many different lipid classes. Triacylglycerol can be synthesized from DAG assembled de novo, or from DAG produced by catabolism of membrane lipids, most commonly phosphatidylcholine.
View Article and Find Full Text PDFPlant lipid metabolism is a dynamic network where synthesis of essential membrane lipids overlaps with synthesis of valuable storage lipids (, vegetable oils). Monogalactosyldiacylglycerol (MGDG) is a key component of the chloroplast membrane system required for photosynthesis and is produced by multiple pathways within the lipid metabolic network. The bioengineering of plants to enhance oil production can alter lipid metabolism in unexpected ways which may not be apparent by static quantification of lipids, but changes to lipid metabolic flux can be traced with isotopic labeling commonly with [C]acetate.
View Article and Find Full Text PDFSeed triacylglycerol (TAG) biosynthesis involves a metabolic network containing multiple different diacylglycerol (DAG) and acyl donor substrate pools. This network of pathways overlaps with those for essential membrane lipid synthesis and utilizes multiple different classes of TAG biosynthetic enzymes. Acyl flux through this network ultimately dictates the final oil fatty acid composition.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
May 2020
Three normal phase HPLC methods were produced to separate lipid classes on a PVA-Sil stationary phase including: 9 polar lipids (method 1); 13 combined polar and neutral lipids (method 2); and a combined method that further separates the neutral lipids into 2-4 subclasses based on the presence of fatty acids containing a polar functional group (e.g. hydroxyl) for a total of 20 lipid classes and subclasses separated in a single run (method 3).
View Article and Find Full Text PDFThe triacylglycerols (TAGs; i.e. oils) that accumulate in plants represent the most energy-dense form of biological carbon storage, and are used for food, fuels, and chemicals.
View Article and Find Full Text PDFIn vivo and in vitro analyses of Euphorbiaceae species' triacylglycerol assembly enzymes substrate selectivity are consistent with the co-evolution of seed-specific unusual fatty acid production and suggest that many of these genes will be useful for biotechnological production of designer oils. Many exotic Euphorbiaceae species, including tung tree (Vernicia fordii), castor bean (Ricinus communis), Bernardia pulchella, and Euphorbia lagascae, accumulate unusual fatty acids in their seed oils, many of which have valuable properties for the chemical industry. However, various adverse plant characteristics including low seed yields, production of toxic compounds, limited growth range, and poor resistance to abiotic stresses have limited full agronomic exploitation of these plants.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
December 2018
In this paper, we report a method for the separation of hydroxy fatty acid and non-hydroxy fatty acid containing neutral lipid classes via normal phase HPLC with UV detection on a PVA-Sil column. The hexane/isopropanol/methanol/water based method separates all the neutral lipids in 21 min, and subsequently flushes through the polar lipids by 27 min such that prefractionation of neutral and polar lipids are not required, and the column is re-equilibrated for the next run in 15 min, for a total run time of 45 min per sample. The separation was demonstrated at both 1.
View Article and Find Full Text PDF