Questions Under Study: New evidence demonstrated that high tidal volume mechanical ventilation results in substantial bronchial airway mechanical strain. In addition, high tidal volume mechanical ventilation has been shown to increase IL-8 production in a mechanism mediated, at least in part, by low molecular weight hyaluronan (LWM-HA). In the present study, it was investigated whether LMW-HA synthesised in the lung, in response to cyclic stretch, increased IL-8 production in the bronchial epithelium.
View Article and Find Full Text PDFHeparin (HP) inhibits the growth of several cell types in vitro including bovine pulmonary artery (BPA) smooth muscle cells (SMCs). In initial studies we discovered that an O-hexanoylated low-molecular-weight (LMW) HP derivative having acyl groups with 6-carbon chain length was more potent inhibitor of BPA-SMCs than the starting HP. We prepared several O-acylated LMWHP derivatives having 4-, 6-, 8-, 10-, 12-, and 18- carbon acyl chain lengths to determine the optimal acyl chain length for maximum anti-proliferative properties of BPA-SMCs.
View Article and Find Full Text PDFBackground And Objective: High MW hyaluronan (HMW HA) as opposed to low MW hyaluronan (LMW HA) has been shown to have anti-inflammatory and anti-apoptotic effects. We hypothesized that treatment with HMW HA would block smoke inhalation lung injury by inhibiting smoke-induced lung inflammation and airway epithelial cell apoptosis.
Methods: Anesthetized, intubated male rats were randomly allocated to either control or smoke inhalation injury groups.
Ras homolog gene family member A (RhoA) through Rho kinase kinase (ROCK), one of its downstream effectors, regulates a wide range of cell physiological functions, including vascular smooth muscle cell (SMC) proliferation, by degrading cyclin-dependent kinase inhibitor, p27. Our previous studies found that heparin inhibition of pulmonary artery SMC (PASMC) proliferation and pulmonary hypertension was dependent on p27 up-regulation. To investigate whether ROCK, a regulator of p27, is involved in regulation of heparin inhibition of PASMC proliferation, we analyzed ROCK expression in the lungs from mice and from human PASMCs exposed to hypoxia, and investigated the effect of ROCK expression in vitro by RhoA cDNA transfection.
View Article and Find Full Text PDFHeparin (HP) inhibits the proliferation of bovine pulmonary artery smooth muscle cells (BPASMC's), among other cell types in vitro. In order to develop a potential therapeutic agent to reverse vascular remodeling, we are involved in deciphering the relationship between the native HP structure and its antiproliferative potency. We have previously reported the influence of the molecular size and the effects of various O-sulfo and N-acetyl groups of HP on growth-inhibitory activity.
View Article and Find Full Text PDFLow m.w. hyaluronan (LMW HA) has been shown to elicit the expression of proinflammatory cytokines and chemokines in various cells in vitro.
View Article and Find Full Text PDFWhole unfractionated heparin can modestly decrease tumor growth, but the dose of heparin is limited by its anticoagulant properties. To overcome this limitation, we modified the chemical structure of heparin and have prepared a heparin derivative by O-acylating low molecular weight heparin with butyric anhydride, producing a more potent antiproliferative compound, which is only weakly anticoagulant so that the dose may be escalated without threat of hemorrhage. In this study, we investigated the effect of this chemically modified heparin, butanoylated heparin, on the growth of lung cancer in vitro and in vivo.
View Article and Find Full Text PDFHeparin (HP) inhibits pulmonary artery smooth muscle cell (PASMC) growth in vitro and vascular remodeling in vivo. Bârzu et al. (1994) suggested that the antiproliferative effect of HP on rat aortic smooth muscle cell in vitro diminishes with prolonged exposure to heparin.
View Article and Find Full Text PDFLow-molecular-weight hyaluronan produced by hyaluronan synthase 3 (HAS3) has been shown to play a role in acute lung injury secondary to high-tidal-volume ventilation. Phosphodiesterase 3 inhibitors have been shown to decrease HAS3 expression. We hypothesized that low-molecular-weight hyaluronan (LMW HA) produced by HAS3 mediates LPS-induced lung injury in the mechanically ventilated rat and that milrinone (MIL), by blocking HAS3 mRNA expression, would prevent the injury.
View Article and Find Full Text PDFIntroduction: Mechanical ventilation with even moderate-sized tidal volumes synergistically increases lung injury in sepsis and has been associated with proinflammatory low-molecular-weight hyaluronan production. High-molecular-weight hyaluronan (HMW HA), in contrast, has been found to be anti-inflammatory. We hypothesized that HMW HA would inhibit lung injury associated with sepsis and mechanical ventilation.
View Article and Find Full Text PDFHeparin inhibits the growth of several cell types in vitro, including bovine pulmonary artery smooth muscle cells (BPASMCs). To understand more about the heparin structure required for endogenous activity, chemically modified derivatives of native heparin and glycol-split heparin, namely, 2-O-desulfonated iduronic/glucuronic acid residues in heparin, and 2-O-desulfonated iduronic residues in glycol-split heparin were prepared. These were assayed for their antiproliferative potency on cultured BPASMCs.
View Article and Find Full Text PDFAm J Respir Crit Care Med
June 2008
Rationale: Our previous studies found that Na(+)/H(+) exchanger (NHE) activity played an essential role in pulmonary artery smooth muscle cell (PASMC) proliferation and in the development of hypoxia-induced pulmonary hypertension and vascular remodeling. Other investigators recently observed increased expression of the NHE isoform 1 (NHE1) gene in rodents with pulmonary hypertension induced by hypoxia. However, a causal role for the NHE1 gene in pulmonary hypertension has not been determined.
View Article and Find Full Text PDFRationale: We have shown previously that antiproliferative unfractionated heparins block hypoxia-induced pulmonary arterial hypertension (PAH) and vascular remodeling, and hypothesized that low-molecular-weight heparins (LMWHs) would too.
Objectives: To determine the potential role and mechanisms of dalteparin and enoxaparin (two LMWHs) in inhibiting hypoxic PAH and vascular remodeling.
Methods: Male Hartley guinea pigs were exposed for 10 days to normobaric 10% oxygen with dalteparin (5 mg/kg), enoxaparin (5 mg/kg), or with an equivalent volume of normal saline solution.
Proliferation of pulmonary artery smooth muscle cells (PASMCs) appears to play a significant role in chronic pulmonary hypertension. The proliferation of PASMCs is strongly inhibited by some commercial heparin preparations. Heparin fragments were prepared by periodate treatment, followed by sodium borohydride reduction, to enhance potency.
View Article and Find Full Text PDFThe balance between cell proliferation and cell quiescence is regulated delicately by a variety of mediators, in which cyclin-dependent kinases (CDK) and CDK inhibitors (CDKI) play a very important role. Heparin which inhibits pulmonary artery smooth muscle cell (PASMC) proliferation increases the levels of two CDKIs, p21 and p27, although only p27 is important in inhibition of PASMC growth in vitro and in vivo. In the present study we investigated the expression profile of all the cell cycle regulating genes, including all seven CDKIs (p21, p27, p57, p15, p16, p18, and p19), in the lungs of mice with hypoxia-induced pulmonary hypertension.
View Article and Find Full Text PDFMechanisms that regulate inflammation and repair after acute lung injury are incompletely understood. The extracellular matrix glycosaminoglycan hyaluronan is produced after tissue injury and impaired clearance results in unremitting inflammation. Here we report that hyaluronan degradation products require MyD88 and both Toll-like receptor (TLR)4 and TLR2 in vitro and in vivo to initiate inflammatory responses in acute lung injury.
View Article and Find Full Text PDFHeparin has growth inhibitory effects on pulmonary artery smooth muscle cell (PASMC) in vitro and in vivo. However, the mechanism has not been fully defined. In this study, we investigated the role of cyclin-dependent kinase inhibitors, p21(WAF1/cip1) (p21) and p27Kip1 (p27), in the inhibitory effect of heparin on PASMC proliferation in vitro and on hypoxia-induced pulmonary hypertension in vivo using p21 and p27-null mice.
View Article and Find Full Text PDFAm J Respir Crit Care Med
July 2005
We recently found that low-molecular-weight hyaluronan was induced by cyclic stretch in lung fibroblasts and accumulated in lungs from animals with ventilator-induced lung injury. The low-molecular-weight hyaluronan produced by stretch increased interleukin-8 production in epithelial cells, and was accompanied by an upregulation of hyaluronan synthase-3 mRNA. We hypothesized that low-molecular-weight hyaluronan induced by high VT was dependent on hyaluronan synthase 3, and was associated with ventilator-induced lung injury.
View Article and Find Full Text PDFHeparin's (HP's) antiproliferative effect on smooth muscle cells is potentially important in defining new approaches to treat pulmonary hypertension. The commercially available HP and heparan sulfate (HS) are structurally heterogenous polymers. In order to examine which sulfonate groups are required for endogenous antiproliferative activity, we prepared the following six chemically modified porcine mucosal HP and HS, which fell into three groups.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
January 2004
Mechanical ventilation has been shown to cause ventilator-induced lung injury (VILI), probably by overdistending or stretching the lung. Hyaluronan (HA), a component of the extracellular matrix, in low molecular weight (LMW) forms has been shown to induce cytokine production. LMW HA is produced by hyaluronan synthase 3 (HAS 3).
View Article and Find Full Text PDFBiochem Biophys Res Commun
February 2003
Heparin (HP) has antiproliferative as well as anticoagulant properties, but not all HP preparations are equally antiproliferative. A recent report found that HP lost its total antiproliferative activity when fetal bovine serum (FBS) was replaced with human serum (HS) in culture media. This observation led to the investigation of our most potent antiproliferative Upjohn HP preparation effects on bovine pulmonary artery smooth muscle cells (PASMC) and systemic SMC growth stimulated in the presence of either FBS or HS.
View Article and Find Full Text PDFThe antiproliferative activity of Heparin (HP) on bovine pulmonary artery smooth muscle cells (BPASMC) in vitro requires both N-acetylation and N-sulfonation. This was demonstrated by quantifying the relative N-acetylation of three commercial heparins of known antiproliferative activities, using their Fourier-transform infrared (FTIR) band areas at 1381-1378 and 1320-1317 cm(-1), which combined resulted in 1.0, 1.
View Article and Find Full Text PDFHeparin has a wide range of important biological activities including inhibition of pulmonary artery smooth muscle cell proliferation. To determine the minimum size of the heparin glycosaminoglycan chain essential for antiproliferative activity, porcine intestinal mucosal heparin was partially depolymerized with heparinase and fractionated to give oligosaccharides of different sizes. The structure of these oligosaccharides was fully characterized by 1D and 2D 1H NMR spectroscopy.
View Article and Find Full Text PDF