Publications by authors named "Hari Chand Sharma"

Pod borer (Helicoverpa armigera) causes the highest yield losses in pigeonpea, followed by pod fly (Melanagromyza obtusa). High levels of resistance to pod borer are not available in the cultivated genepool. Several accessions of wild Cajanus species with strong resistance, and different resistance mechanisms (antixenosis and antibiosis) to pod borer have been identified.

View Article and Find Full Text PDF

Neonicotinoids have high agonistic affinity to insect nicotinic acetylcholine receptors (nAChR) and are frequently used as insecticides against most devastating lepidopteran insect pests. Imidacloprid influenced dose-dependent decline in the state III and IV respiration, respiration control index (RCI), and P/O ratios, in vitro and in vivo. The bioassay indicated its LD value to be 531.

View Article and Find Full Text PDF

Phthalic acid diamide insecticides are the most effective insecticides used against most of the lepidopteran pests including Helicoverpa armigera, a polyphagous pest posing threat to several crops worldwide. The present studies were undertaken to understand different target sites and their interaction with insect ryanodine receptors (RyR). Bioassays indicated that flubendiamide inhibited the larval growth in dose-dependent manner with LD value of 0.

View Article and Find Full Text PDF

We characterized trypsin- and chymotrypsin-like serine alkaline proteases from cotton bollworm, Helicoverpa armigera, for their probable potential application as additives in various bio-formulations. Purification was achieved by using hydroxylapatite, DEAE sephadex and CM sephadex columns, which resulted in increased enzyme activity by 13.76- and 14.

View Article and Find Full Text PDF

Flavonoids are important plant secondary metabolites, which protect plants from various stresses, including herbivory. Plants differentially respond to insects with different modes of action. High performance liquid chromatography (HPLC) fingerprinting of phenols of groundnut (Arachis hypogaea) plants with differential levels of resistance was carried out in response to Helicoverpa armigera (chewing insect) and Aphis craccivora (sucking pest) infestation.

View Article and Find Full Text PDF

Sorghum production is affected by a wide array of biotic constraints, of which sorghum shoot fly, Atherigona soccata is the most important pest, which severely damages the sorghum crop during the seedling stage. Host plant resistance is one of the major components to control sorghum shoot fly, A. soccata.

View Article and Find Full Text PDF

Background: Induced resistance to Helicoverpa armigera through exogenous application of jasmonic acid (JA) and salicylic acid (SA) was studied in groundnut genotypes (ICGV 86699, ICGV 86031, ICG 2271 and ICG 1697) with different levels of resistance to insects and the susceptible check JL 24 under greenhouse conditions. Activities of oxidative enzymes and the amounts of secondary metabolites and proteins were quantified at 6 days after JA and SA application/insect infestation. Data were also recorded on plant damage and H.

View Article and Find Full Text PDF

Transgenic crops expressing toxin proteins from Bacillus thuringiensis (Bt) have been deployed on a large scale for management of Helicoverpa armigera. Resistance to Bt toxins has been documented in several papers, and therefore, we examined the role of midgut microflora of H. armigera in its susceptibility to Bt toxins.

View Article and Find Full Text PDF

Plants respond to herbivory through various morphological, biochemicals, and molecular mechanisms to counter/offset the effects of herbivore attack. The biochemical mechanisms of defense against the herbivores are wide-ranging, highly dynamic, and are mediated both by direct and indirect defenses. The defensive compounds are either produced constitutively or in response to plant damage, and affect feeding, growth, and survival of herbivores.

View Article and Find Full Text PDF

Plants respond to herbivory through different defensive mechanisms. The induction of volatile emission is one of the important and immediate response of plants to herbivory. Herbivore-induced plant volatiles (HIPVs) are involved in plant communication with natural enemies of the insect herbivores, neighboring plants, and different parts of the damaged plant.

View Article and Find Full Text PDF