Publications by authors named "Hargen Yibole"

(Fe,Co)(P,Si) quaternary compounds combine large uniaxial magnetocrystalline anisotropy, significant saturation magnetization and tunable Curie temperature, making them attractive for permanent magnet applications. Single crystals or conventionally prepared bulk polycrystalline (Fe,Co)(P,Si) samples do not, however, show a significant coercivity. Here, after a ball-milling stage of elemental precursors, we optimize the sintering temperature and duration during the solid-state synthesis of bulk FeCoPSi compounds so as to obtain coercivity in bulk samples.

View Article and Find Full Text PDF

After almost 20 years of intensive research on magnetocaloric effects near room temperature, magnetic refrigeration with first-order magnetocaloric materials has come close to real-life applications. Many materials have been discussed as potential candidates to be used in multicaloric devices. However, phase transitions in ferroic materials are often hysteretic and a metric is needed to estimate the detrimental effects of this hysteresis.

View Article and Find Full Text PDF

Large magnetically driven temperature changes are observed in MnFe(P,Si,B) materials simultaneously with large entropy changes, limited (thermal or magnetic) hysteresis, and good mechanical stability. The partial substitution of B for P in MnFe(P,Si) compounds is found to be an ideal parameter to control the latent heat observed at the Curie point without deteriorating the magnetic properties, which results in promising magnetocaloric properties suitable for magnetic refrigeration.

View Article and Find Full Text PDF