Publications by authors named "Harekrushna Behera"

Artificial water channels (AWCs) have emerged as a promising framework for stable water permeation, with water transport rates comparable to aquaporins (3.4-40.3 × 10 HO/channel/s).

View Article and Find Full Text PDF

The applications of polymeric membranes have grown rapidly compared to traditional separation technologies due to their energy efficiency and smaller footprint. However, their potential is not fully realized due, in part, to their heterogeneity, which results in a "permeability-selectivity" trade-off for most membrane applications. Inspired by the intricate architecture and excellent homogeneity of biological membranes, bioinspired and biomimetic membranes (BBMs) aim to emulate biological membranes for practical applications.

View Article and Find Full Text PDF

Novel vapor-permeable materials are sought after for applications in protective wear, energy generation, and water treatment. Current impermeable protective materials effectively block harmful agents but trap heat due to poor water vapor transfer. Here we present a new class of materials, vapor permeable dehydrated nanoporous biomimetic membranes (DBMs), based on channel proteins.

View Article and Find Full Text PDF

Proteins are critical to cellular function and survival. They are complex molecules with precise structures and chemistries, which allow them to serve diverse functions for maintaining overall cell homeostasis. Since the discovery of the first enzyme in 1833, a gamut of advanced experimental and computational tools has been developed and deployed for understanding protein structure and function.

View Article and Find Full Text PDF

Unlike many other biologically relevant ions (Na , K , Ca , Cl , etc) and protons, whose cellular concentrations are closely regulated by highly selective channel proteins, Li ion is unusual in that its concentration is well tolerated over many orders of magnitude and that no lithium-specific channel proteins have so far been identified. While one naturally evolved primary pathway for Li ions to traverse across the cell membrane is through sodium channels by competing with Na ions, highly sought-after artificial lithium-transporting channels remain a major challenge to develop. Here we show that sulfur-containing organic nanotubes derived from intramolecularly H-bonded helically folded aromatic foldamers of 3.

View Article and Find Full Text PDF

Anion transporters play a vital role in cellular processes and their dysregulation leads to a range of diseases such as cystic fibrosis, Bartter's syndrome and epilepsy. Synthetic chloride transporters are known to induce apoptosis in cancer cell lines. Herein, we report triamide macrocycles that are easily synthesized and externally functionalized by pendant membrane-permeable groups.

View Article and Find Full Text PDF
Article Synopsis
  • The authors discuss a novel method for synthesizing triamide macrocyclic chloride receptors through a single-step reaction, which combines reduction, condensation, and cyclization.
  • This approach simplifies the process and improves the efficiency of producing these receptors, which have potential applications in sensing and selective recognition.
  • The study highlights the effectiveness of this one-pot reaction in yielding high-quality compounds while minimizing by-products.
View Article and Find Full Text PDF

A pyridine containing triamide macrocycle and its substituted analog have been synthesized in one pot from the corresponding monomer without the use of coupling reagents. The macrocycle can selectively bind chloride ions. The ease of synthesis and chloride-binding properties of the macrocycle make it a highly attractive scaffold for ion-encapsulation, ion-transport and water purification.

View Article and Find Full Text PDF

Protein pores that selectively transport ions across membranes are among nature's most efficient machines. The selectivity of these pores can be exploited for ion sensing and water purification. Since it is difficult to reconstitute membrane proteins in their active form for practical applications it is desirable to develop robust synthetic compounds that selectively transport ions across cell membranes.

View Article and Find Full Text PDF