Almost 2 decades after linking LRRK2 to Parkinson's disease, a vibrant research field has developed around the study of this gene and its protein product. Recent studies have begun to elucidate molecular structures of LRRK2 and its complexes, and our understanding of LRRK2 has continued to grow, affirming decisions made years ago to therapeutically target this enzyme for PD. Markers of LRRK2 activity, with potential to monitor disease progression or treatment efficacy, are also under development.
View Article and Find Full Text PDFMissense mutations along the leucine-rich repeat kinase 2 (LRRK2) protein are a major contributor to Parkinson's Disease (PD), the second most commonly occurring neurodegenerative disorder worldwide. We recently reported the development of allosteric constrained peptide inhibitors that target and downregulate LRRK2 activity through disruption of LRRK2 dimerization. In this study, we designed doubly constrained peptides with the objective of inhibiting C-terminal of Roc (COR)-COR mediated dimerization at the LRRK2 dimer interface.
View Article and Find Full Text PDFBackground: Sarcopenia, the age-associated decline in skeletal muscle mass and strength, has long been considered a disease of muscle only, but accumulating evidence suggests that sarcopenia could originate from the neural components controlling muscles. To identify early molecular changes in nerves that may drive sarcopenia initiation, we performed a longitudinal transcriptomic analysis of the sciatic nerve, which governs lower limb muscles, in aging mice.
Methods: Sciatic nerve and gastrocnemius muscle were obtained from female C57BL/6JN mice aged 5, 18, 21 and 24 months old (n = 6 per age group).
Leucine-rich repeat kinase 2 (LRRK2) is a kinase involved in different cellular functions, including autophagy, endolysosomal pathways, and immune function. Mutations in LRRK2 cause autosomal-dominant forms of Parkinson's disease (PD). Heterozygous mutations in GBA1, the gene encoding the lysosomal enzyme glucocerebrosidase (GCase), are the most common genetic risk factors for PD.
View Article and Find Full Text PDFDespite several advances in the field, pharmacodynamic outcome measures reflective of LRRK2 kinase activity in clinical biofluids remain urgently needed. A variety of targets and approaches have been utilized including assessments of LRRK2 itself (levels, phosphorylation), or its substrates (e.g.
View Article and Find Full Text PDFLeucine-Rich Repeat Kinase 2 (LRRK2) is a large, multidomain protein with dual kinase and GTPase function that is commonly mutated in both familial and idiopathic Parkinson's Disease (PD). While dimerization of LRRK2 is commonly detected in PD models, it remains unclear whether inhibition of dimerization can regulate catalytic activity and pathogenesis. Here, we show constrained peptides that are cell-penetrant, bind LRRK2, and inhibit LRRK2 activation by downregulating dimerization.
View Article and Find Full Text PDFParkinson's disease (PD) is the second most common neurodegenerative disease, comprised of both familial and idiopathic forms, behind only Alzheimer's disease (AD). The disease is characterized, regardless of the pathogenesis, primarily by a loss of DA neurons in the ventral midbrain as well as noradrenergic neurons of the locus coeruleus; however, by the time symptoms manifest, considerable neuronal loss in both areas has occurred. Neuroprotective strategies thus have to be paired with more sensitive and specific biomarker assays that can identify early at-risk patients in order to initiate disease-modifying therapies at an earlier stage in the disease.
View Article and Find Full Text PDFEvidence is mounting that LRRK2 function, particularly its kinase activity, is elevated in multiple forms of Parkinson's disease, both idiopathic as well as familial forms linked to mutations in the gene. However, sensitive quantitative markers of LRRK2 activation in clinical samples remain at the early stages of development. There are several measures of LRRK2 activity that could potentially be used in longitudinal studies of disease progression, as inclusion/exclusion criteria for clinical trials, to predict response to therapy, or as markers of target engagement.
View Article and Find Full Text PDFBackground: Leucine-rich repeat kinase 2 kinase inhibitors are being vigorously pursued as potential therapeutic options; however, there is a critical need for sensitive and quantitative assays of leucine-rich repeat kinase 2 function and target engagement.
Objectives: Our objective was to compare collection and storage protocols for peripheral blood mononuclear cells, and to determine the optimal conditions for downstream analyses of leucine-rich repeat kinase 2 in PD cohorts.
Methods: Here, we describe enzyme-linked immunosorbent assay-based assays capable of detecting multiple aspects of leucine-rich repeat kinase 2 function at endogenous levels in human tissues.
Biomarkers and disease-modifying therapies are both urgent unmet medical needs in the treatment of Parkinson's disease (PD) and must be developed concurrently because of their interdependent relationship: biomarkers for the early detection of disease (i.e., prior to overt neurodegeneration) are necessary in order for patients to receive maximal therapeutic benefit and vice versa; disease-modifying therapies must become available for patients whose potential for disease diagnosis and prognosis can be predicted with biomarkers.
View Article and Find Full Text PDFMissense mutations in Leucine-Rich Repeat Kinase 2 (LRRK2) cause the majority of familial and some sporadic forms of Parkinson's disease (PD). The hyperactivity of LRRK2 kinase induced by the pathogenic mutations underlies neurotoxicity, promoting the development of LRRK2 kinase inhibitors as therapeutics. Many potent and specific small-molecule LRRK2 inhibitors have been reported with promise.
View Article and Find Full Text PDFThe Parkinson's disease (PD) protein leucine-rich repeat kinase 2 (LRRK2) exists as a mixture of monomeric and dimeric species, with its kinase activity highly concentrated in the dimeric conformation of the enzyme. We have adapted the proximity biotinylation approach to study the formation and activity of LRRK2 dimers isolated from cultured cells. We find that the R1441C and I2020T mutations both enhance the rate of dimer formation, whereas, the G2019S kinase domain mutant is similar to WT, and the G2385R risk factor variant de-stabilizes dimers.
View Article and Find Full Text PDFLeucine-rich repeat kinase 2 (LRRK2) is a large protein of unclear function. Rare mutations in the gene cause familial Parkinson's disease (PD) and inflammatory bowel disease. Genome-wide association studies (GWAS) have revealed significant association of the abovementioned diseases at the locus.
View Article and Find Full Text PDFAutosomal-dominant, missense mutations in the leucine-rich repeat protein kinase 2 () gene are the most common genetic predisposition to develop Parkinson's disease (PD). LRRK2 kinase activity is increased in several pathogenic mutations (N1437H, R1441C/G/H, Y1699C, G2019S), implicating hyperphosphorylation of a substrate in the pathogenesis of the disease. Identification of the downstream targets of LRRK2 is a crucial endeavor in the field to understand LRRK2 pathway dysfunction in the disease.
View Article and Find Full Text PDFIn experimental models, both in vivo and cellular, over-expression of Parkinson's linked mutant leucine-rich repeat kinase 2 (LRRK2) is sufficient to induce neuronal death. While several cell death associated proteins have been linked to LRRK2, either as protein interactors or as putative substrates, characterization of the neuronal death cascade remains elusive. In this study, we have mapped for the first time the domain within LRRK2 that mediates the interaction with FADD, thereby activating the molecular machinery of the extrinsic death pathway.
View Article and Find Full Text PDFSince its cloning and identification in 2004, considerable gains have been made in the understanding of the basic functionality of leucine-rich repeat kinase 2 (LRRK2), including its kinase and GTPase activities, its protein interactors and subcellular localization, and its expression in the CNS and peripheral tissues. However, the mechanism(s) by which expression of mutant forms of LRRK2 lead to the death of dopaminergic neurons of the ventral midbrain remains largely uncharacterized. Because of its complex domain structure, LRRK2 exhibits similarities with multiple protein families including ROCO proteins, as well as the RIP kinases.
View Article and Find Full Text PDFParkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopaminergic (DAergic) neurons in the substantia nigra and the gradual depletion of dopamine (DA). Current treatments replenish the DA deficit and improve symptoms but induce dyskinesias over time, and neuroprotective therapies are nonexistent. Here we report that Nuclear receptor-related 1 (Nurr1):Retinoid X receptor α (RXRα) activation has a double therapeutic potential for PD, offering both neuroprotective and symptomatic improvement.
View Article and Find Full Text PDFAutosomal dominantly inherited mutations in the gene encoding leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of Parkinson's disease. While considerable progress has been made in understanding its function and the many different cellular activities in which it participates, a clear understanding of the mechanism(s) of the induction of neuronal death by mutant forms of LRRK2 remains elusive. Although several models have documented the progressive loss of dopaminergic neurons of the substantia nigra, more complete interrogations of the modality of neuronal death have been gained from cellular models.
View Article and Find Full Text PDFBackground: Despite the plethora of sequence variants in LRRK2, only a few clearly segregate with PD. Even within this group of pathogenic mutations, the phenotypic profile can differ widely.
Objective: We examined multiple properties of LRRK2 behavior in cellular models over-expressing three sequence variants described in Greek PD patients in comparison to several known pathogenic and non-pathogenic LRRK2 mutations, to determine if specific phenotypes associated with pathogenic LRRK2 can be observed in other less-common sequence variants for which pathogenicity is unclear based on clinical and/or genetic data alone.
Spinal muscular atrophy (SMA) is a genetic neurological disease that causes infant mortality; no effective therapies are currently available. SMA is due to homozygous mutations and/or deletions in the survival motor neuron 1 gene and subsequent reduction of the SMN protein, leading to the death of motor neurons. However, there is increasing evidence that in addition to motor neurons, other cell types are contributing to SMA pathology.
View Article and Find Full Text PDFNeurochem Res
November 2014
Leucine-rich repeat kinase 2 (LRRK2) is a large, widely expressed protein of largely unknown function. Mutations in the gene encoding LRRK2 have been linked to multiple diseases, including a prominent association with familial and sporadic Parkinson's disease (PD), as well as inflammatory bowel disorders such as Crohn's disease. The LRRK2 protein possesses both kinase and GTPase signaling domains, as well as multiple protein interaction domains.
View Article and Find Full Text PDFDominant missense mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common genetic causes of Parkinson disease (PD) and genome-wide association studies identify LRRK2 sequence variants as risk factors for sporadic PD. Intact kinase function appears critical for the toxicity of LRRK2 PD mutants, yet our understanding of how LRRK2 causes neurodegeneration remains limited. We find that most LRRK2 PD mutants abnormally enhance LRRK2 oligomerization, causing it to form filamentous structures in transfections of cell lines or primary neuronal cultures.
View Article and Find Full Text PDFSubstantial genetic, neuropathological, and biochemical evidence implicates the presynaptic neuronal protein α-synuclein in Parkinson's disease and related Lewy body disorders. How dysregulation of α-synuclein leads to neurodegeneration is, however, unclear. Soluble oligomeric, but not fully fibrillar, α-synuclein is thought to be toxic.
View Article and Find Full Text PDF