Publications by authors named "Hardie D"

The activation of the AMP-activated protein kinase (AMPK) and inhibition of the mammalian target of rapamycin complex 1 (mTORC1) is hypothesized to underlie the fact that muscle growth following resistance exercise is decreased by concurrent endurance exercise. To directly test this hypothesis, the capacity for muscle growth was determined in mice lacking the primary upstream kinase for AMPK in skeletal muscle, LKB1. Following either 1 or 4 weeks of overload, there was no difference in muscle growth between the wild type (wt) and LKB1(-/-) mice (1 week: wt, 38.

View Article and Find Full Text PDF

The carotid bodies play a critical role in initiating compensatory ventilatory responses to hypoxia. However, the complete mechanism by which hypoxia excites the oxygen-sensing carotid body type 1 cells has not been fully defined. We have previously proposed that the enzyme adenosine monophosphate-activated protein kinase (AMPK) may couple hypoxic inhibition of mitochondrial oxidative phosphorylation to carotid body type I cell excitation (Evans, Mustard, Wyatt, Peers, Dipp, Kumar, Kinnear and Hardie 2005).

View Article and Find Full Text PDF

Background: It seems to be clear that hepatic age-related HMG-CoA reductase total activation is connected to a rise of reactive oxygen species (ROS). However, the mechanism by which ROS achieve this effect is unknown. Thus, in this work, we have performed a study of HMG-CoAR by analyzing the enzymes involved in its short-term regulation, namely, AMP-activated kinase (AMPK) and protein phosphatase 2A (PP2A).

View Article and Find Full Text PDF

Obesity, type 2 diabetes and the metabolic syndrome are disorders of energy balance, which the AMP-activated protein kinase (AMPK) regulates both at the cellular and whole body levels. AMPK switches cells from an anabolic state where nutrients are taken up and stored, to a catabolic state where they are oxidized. Drugs that activate AMPK indirectly (metformin and thiazolidinediones) are now the mainstay of treatment for type 2 diabetes, but more direct AMPK activators may have fewer side effects.

View Article and Find Full Text PDF

AMP-activated protein kinase (AMPK) has attracted much attention for its key role in energy homeostasis. Three new papers providing structural information on mammalian and yeast AMPK homologs give insights into the binding of the regulatory nucleotides AMP and ATP and how mutations are associated with cardiac glycogen storage disorders.

View Article and Find Full Text PDF

We have studied the mechanism of A-769662, a new activator of AMP-activated protein kinase (AMPK). Unlike other pharmacological activators, it directly activates native rat AMPK by mimicking both effects of AMP, i.e.

View Article and Find Full Text PDF

This glasshouse study used an improved larval measurement procedure to evaluate the impact of transgenic pea, Pisum sativum L., seeds expressing a-amylase inhibitor (AI)-1 or -2 proteins on pea weevil, Bruchus pisorum L. Seeds of transgenic 'Laura' and 'Greenfeast' peas expressing alpha-(AI)-1 reduced pea weevil survival by 93-98%.

View Article and Find Full Text PDF

Elucidating the molecular pathways linking electrical activity to gene expression is necessary for understanding the effects of exercise on muscle. Fast muscles express higher levels of MyoD and lower levels of myogenin than slow muscles, and we have previously linked myogenin to expression of oxidative enzymes. We here report that in slow muscles, compared with fast, 6 times as much of the MyoD is in an inactive form phosphorylated at T115.

View Article and Find Full Text PDF

The SNF1/AMP-activated protein kinase (AMPK) family maintains the balance between ATP production and consumption in all eukaryotic cells. The kinases are heterotrimers that comprise a catalytic subunit and regulatory subunits that sense cellular energy levels. When energy status is compromised, the system activates catabolic pathways and switches off protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation.

View Article and Find Full Text PDF

A 10-wk-old infant girl with severe hypertrophy of the septal and atrial walls by cardiac ultrasound, developed progressive ventricular wall thickening and died of aspiration pneumonia at 5 mo of age. Postmortem examination revealed ventricular hypertrophy and massive atrial wall thickening due to glycogen accumulation. A skeletal muscle biopsy showed increased free glycogen and decreased activity of phosphorylase b kinase (PHK).

View Article and Find Full Text PDF

AS160 (Akt substrate of 160 kDa) mediates insulin-stimulated GLUT4 (glucose transporter 4) translocation, but is widely expressed in insulin-insensitive tissues lacking GLUT4. Having isolated AS160 by 14-3-3-affinity chromatography, we found that binding of AS160 to 14-3-3 isoforms in HEK (human embryonic kidney)-293 cells was induced by IGF-1 (insulin-like growth factor-1), EGF (epidermal growth factor), PMA and, to a lesser extent, AICAR (5-aminoimidazole-4-carboxamide-1-b-D-ribofuranoside). AS160-14-3-3 interactions were stabilized by chemical cross-linking and abolished by dephosphorylation.

View Article and Find Full Text PDF

Background And Purpose: AMP-activated protein kinase (AMPK) is activated by metformin, phenformin, and the AMP mimetic, 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR). We have completed an extensive study of the pharmacological effects of these drugs on AMPK activation, adenine nucleotide concentration, transepithelial amiloride-sensitive (I(amiloride)) and ouabain-sensitive basolateral (I(ouabain)) short circuit current in H441 lung epithelial cells.

Experimental Approach: H441 cells were grown on permeable filters at air interface.

View Article and Find Full Text PDF

Activation of AMP-activated protein kinase (AMPK) in rodent muscle by exercise, metformin, 5-aminoimidazole-4-carboxamide 1-beta-d-ribofuranoside (AICAR), and adiponectin increases glucose uptake. The aim of this study was to determine whether AICAR stimulates muscle glucose uptake in humans. We studied 29 healthy men (aged 26 +/- 8 years, BMI 25 +/- 4 kg/m(2) [mean +/- SD]).

View Article and Find Full Text PDF

Mammalian AMP-activated protein kinase is a serine/threonine protein kinase that acts as a sensor of cellular energy status. AMP-activated protein kinase is a heterotrimer of three different subunits, i.e.

View Article and Find Full Text PDF

The AMP-activated protein kinase (AMPK) system acts as a sensor of cellular energy status that is conserved in all eukaryotic cells. It is activated by increases in the cellular AMP:ATP ratio caused by metabolic stresses that either interfere with ATP production (eg, deprivation for glucose or oxygen) or that accelerate ATP consumption (eg, muscle contraction). Activation in response to increases in AMP involves phosphorylation by an upstream kinase, the tumor suppressor LKB1.

View Article and Find Full Text PDF

Vascular endothelial growth factor (VEGF) is an important regulator of endothelial cell function. VEGF stimulates NO production, proposed to be a result of phosphorylation and activation of endothelial NO synthase (eNOS) at Ser1177. Phosphorylation of eNOS at this site also occurs after activation of AMP-activated protein kinase (AMPK) in cultured endothelial cells.

View Article and Find Full Text PDF

Recent studies have demonstrated a strong relationship between aging-associated reductions in mitochondrial function, dysregulated intracellular lipid metabolism, and insulin resistance. Given the important role of the AMP-activated protein kinase (AMPK) in the regulation of fat oxidation and mitochondrial biogenesis, we examined AMPK activity in young and old rats and found that acute stimulation of AMPK-alpha(2) activity by 5'-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) and exercise was blunted in skeletal muscle of old rats. Furthermore, mitochondrial biogenesis in response to chronic activation of AMPK with beta-guanidinopropionic acid (beta-GPA) feeding was also diminished in old rats.

View Article and Find Full Text PDF

The AMP-activated protein kinase (AMPK) system monitors cellular energy status by sensing AMP and ATP, and is a key regulator of energy balance at the cellular and whole-body levels. AMPK exists as heterotrimeric alphabetagamma complexes, and the gamma subunits contain two tandem domains that bind the regulatory nucleotides. There is a sequence in the first of these domains that is conserved in gamma subunit homologues in all eukaryotes, and which resembles the sequence around sites phosphorylated on target proteins of AMPK, except that it has a non-phosphorylatable residue in place of serine.

View Article and Find Full Text PDF

The cellular energy-sensing kinase AMPK is known to be activated in neurons in response to metabolic insults, but the downstream consequences have been unclear. A study by Kuramoto and colleagues in this issue of Neuron favors the idea that AMPK activation is neuroprotective, and suggests a potential mechanism for this effect involving phosphorylation of the GABA(B) receptor.

View Article and Find Full Text PDF

Early detection of an O2 deficit in the bloodstream is essential to initiate corrective changes in the breathing pattern of mammals. Carotid bodies serve an essential role in this respect; their type I cells depolarize when O2 levels fall, causing voltage-gated Ca2+ entry. Subsequent neurosecretion elicits increased afferent chemosensory fiber discharge to induce appropriate changes in respiratory function (1).

View Article and Find Full Text PDF