Publications by authors named "Hardeveld C"

ROS have been implicated in the development of pathological ventricular hypertrophy and the ensuing contractile dysfunction. Using the rat monocrotaline (MCT) model of pulmonary arterial hypertension (PAH), we recently reported oxidative stress in the failing right ventricle (RV) with no such stress in the left ventricle of the same hearts. We used the antioxidant EUK-134 to assess the role of ROS in the pathological remodeling and dysfunction of the RV.

View Article and Find Full Text PDF

In neonatal ventricular cardiomyocytes (NVCM), decreased contractile activity stimulates sarco-endoplasmic reticulum Ca(2+)-ATPase2a (SERCA2a), analogous to reduced myocardial load in vivo. This study investigated in contracting NVCM the role of load-dependent RhoA-ROCK signaling in SERCA2a regulation. Contractile arrest of NVCM resulted in low peri-nuclear localized RhoA levels relative to contracting NVCM.

View Article and Find Full Text PDF

Skeletal muscles are composed of several types of fibers with different contractile and metabolic properties. Genetic background and type of innervation of the fibers primarily determine these properties, but thyroid hormone (TH) is a powerful modulator of the fiber phenotype. The rates of contraction and relaxation are stimulated by TH, as are the energy consumption and heat production associated with activity.

View Article and Find Full Text PDF

Objective: Reactive oxygen species (ROS) have been implicated in the progression of ventricular hypertrophy to congestive heart failure. However, the source of increased oxidative stress in cardiomyocytes remains unclear.

Methods: Here we examined NADPH oxidase and mitochondria as sources of ventricular ROS production in a rat model of right-ventricular (RV) failure (CHF) induced by pulmonary arterial hypertension (PAH).

View Article and Find Full Text PDF

Myocardial right ventricular (RV) hypertrophy due to pulmonary hypertension is aimed at normalizing ventricular wall stress. Depending on the degree of pressure overload, RV hypertrophy may progress to a state of impaired contractile function and heart failure, but this cannot be discerned during the early stages of ventricular remodeling. We tested whether critical differences in gene expression profiles exist between ventricles before the ultimate development of either a compensated or decompensated hypertrophic phenotype.

View Article and Find Full Text PDF

Objective: Downregulation of sarco-endoplasmic reticulum calcium ATPase 2a (SERCA2a) expression is a critical marker of pathological myocardial hypertrophy. The effects of calcium-dependent signaling and of contractile activity on the regulation of myocardial SERCA2a expression remain unclear. The present study dissociates effects of calcium-dependent signaling through calcineurin (CN) and calmodulin dependent protein kinase-II (CAMK-II), from effects of contractile activity in spontaneously contracting rat neonatal ventricular cardiomyocytes (NVCM) using 2,3-butanedione monoxime (BDM), which arrests contractions but maintains calcium fluxes.

View Article and Find Full Text PDF

Thyroid hormone increases the Ca2+-ATPase activity of the sarcoplasmic reticulum (SR) in skeletal muscle, thereby increasing the energy-turnover associated with Ca2+-cycling during contraction and rest. The fast-muscle isoform of the Ca2+-ATPase (SERCA1) and the slow-muscle isoform (SERCA2a), are encoded by two genes that are transcriptionally regulated by T3. The SERCA1 isoform can be expressed to considerably higher levels than the SERCA2a isoform.

View Article and Find Full Text PDF

The authors have previously shown that norepinephrine (NE) pretreatment attenuates Ca2+ overloading in cardiac rat trabeculae during metabolic inhibition, and improves contractile function during a subsequent recovery period. The present study investigated: (i) whether protection of sarcoplasmic reticulum (SR) function during metabolic inhibition (MI) is involved in the preconditioning-like effect of NE-pretreatment, and (ii) whether or not this process is PKC-dependent. A 15 min preincubation period was used with 1 micromol/l exogenous NE to precondition isolated, superfused rat trabeculae against contractile dysfunctioning following 40 min of MI in 2 mmol/l NaCN containing Tyrode (gassed with 95% O2/5% CO2; pH 7.

View Article and Find Full Text PDF

We have recently shown that norepinephrine (NE) pretreatment attenuates Ca2+ overloading in cardiac rat trabeculae during metabolic inhibition (MI) with NaCN (2 mmol/l), and improves contractile recovery during a subsequent recovery period (RP). In the present study, we investigated the effects of the continuous presence of NE (1 micro mol/l), i.e.

View Article and Find Full Text PDF

We have previously demonstrated an interaction between the major determinants of skeletal muscle phenotype by showing that continuous contractile activity represses the thyroid hormone (3,3', 5-tri-iodothyronine; T3)-dependent transcriptional activity of fast-type sarcoplasmic/endoplasmic-reticulum Ca2+-ATPase (SERCA1), a characteristic of the fast phenotype. Both the free cytosolic Ca2+ concentration ([Ca2+]i) and the myogenic determination factors MyoD and myogenin have been implicated as mediators of the effect of contractile activity on skeletal muscle phenotype. Using L6 cells we have shown that an increase in the steady-state [Ca2+]i above the resting level of 120 nM indeed can mimic the effect of contractile activity on T3-dependent SERCA1 expression.

View Article and Find Full Text PDF

The present study was designed in order to investigate more precisely the role of calcium homeostasis maintenance in protein kinase C (PKC) mediated preconditioning. We used a 15 min pre-incubation period, with 1 mumol/l exogenous norepinephrine (NE) to pharmacologically precondition isolated, superfused rat trabeculae against contractile dysfunctioning following 120 min of metabolic inhibition (MI, in 2 mmol/l CN- containing Tyrode without glucose at 1 Hz stimulation frequency). Contractile recovery was studied during a subsequent 60 min recovery period (RP, in glucose containing Tyrode at 0.

View Article and Find Full Text PDF

Decreased expression of the cardiac slow-twitch sarcoplasmic reticulum Ca2+-adenosinetriphosphatase (SERCA2), a major determinant of Ca2+ homeostasis, contributes to the abnormal intracellular Ca2+ handling in the failing heart. We investigated the contractility dependence of the effects of norepinephrine (NE) and thyroid hormone (T3) on SERCA2 expression in cultured neonatal heart cells under serum-free conditions. NE and T3 are associated with pathological and physiological forms of hypertrophy, respectively, whereas both hormones increase contractility.

View Article and Find Full Text PDF

Chronic low-frequency contraction of skeletal muscle, either induced by a slow motor nerve or through direct electrical stimulation, generally induces expression of proteins associated with the slow phenotype, while repressing the corresponding fast isoforms. Contractions thereby counteract the primarily transcriptional effect of thyroid hormone (T3) which results in the selective induction and stimulation of expression of fast isoforms. We studied the regulation of expression of the fast-type sarcoplasmic-reticulum Ca2+-ATPase (SERCA1), a characteristic component of the fast phenotype.

View Article and Find Full Text PDF

Relaxation of skeletal muscle requires the re-uptake of Ca2+, which is mediated by the sarcoplasmic reticulum Ca2+-ATPase (SERCA). Thyroid hormone (T3) stimulates the expression of the SERCA1 isoform, which is essential for fast skeletal muscle fiber phenotype. We have cloned and studied the first 962 base pairs of the 5'-flanking region of the rat SERCA1 gene.

View Article and Find Full Text PDF

Myogenic determination factors (MDF) have been implicated in the establishment and maintenance of the fast or slow phenotype in skeletal muscle, with MyoD favoring the fast and myogenin favoring the slow phenotype. Accordingly, contractility-induced changes in muscle phenotype should be accompanied by a change in the MyoD/myogenin ratio. Some reports show such changes, but limitations inherent to in vivo studies complicate interpretation of these data.

View Article and Find Full Text PDF

We studied the effect of thyroid hormone (3,5,3'-triiodo-L-thyronine, T3) on the expression of sarcoplasmic reticulum (SR) fast- and slow-type Ca(2+)-ATPase isoforms, SERCA1 and SERCA2a, respectively, and total SR Ca(2+)-ATPase activity in rat skeletal muscle. Cross sections and homogenates of soleus and extensor digitorum longus muscles from hypo-, eu-, and hyperthyroid rats were examined, and expression of Ca(2+)-ATPase isoforms in individual fibers was compared with expression of fast (MHC II) and slow (MHC I) myosin heavy chain isoforms. In both muscles, T3 induced a coordinated and full conversion to a fast-twitch phenotype in one-half of the fibers that were slow twitch in the absence of T3.

View Article and Find Full Text PDF

We have measured the rate of heat production of isolated, quiescent, right ventricular trabeculae of the rat under isosmotic and hyperosmotic conditions, using a microcalorimetric technique. In parallel experiments, we measured force production and intracellular calcium concentration ([Ca2+]i). The rate of resting heat production under isosmotic conditions (mean +/- SEM, n = 32) was 100 +/- 7 mW (g dry wt)-1; it increased sigmoidally with osmolality, reaching a peak that was about four times the isosmotic value at about twice normal osmotic pressure.

View Article and Find Full Text PDF

This report describes the development of a histochemical method for the demonstration of sarcoplasmic reticulum Ca-ATPase activity in cross-sections of skeletal muscle. The demonstration of sarcoplasmic reticulum Ca-ATPase activity is complicated by the fact that capturing reagents for phosphate inhibit the enzyme. We present a minimal model for heavy-metal-phosphate precipitation reactions which gives a theoretical description of the effect of enzyme inhibition on the rate of phosphate precipitation in the section.

View Article and Find Full Text PDF

The beneficial effect of low pH during cardiac ischemia on reperfusion injury has often been attributed to its energy-saving effect due to inhibition of contraction. The role of low pH on Ca2+ accumulation and muscle tension was assessed in energy-depleted tissue by changing the pH of the medium from 7.4 to 6.

View Article and Find Full Text PDF

The aim of this study was to investigate the mechanism(s) underlying the thyroid-hormone (L-tri-iodothyronine, T3)-induced elevation of fast-type sarcoplasmic-reticulum Ca(2+)-ATPase (SERCA1) levels in L6 myotubes and the potentiating effect of insulin-like growth factor-I (IGF-I) [Muller, van Hardeveld, Simonides and van Rijn (1991) Biochem. J. 275, 35-40].

View Article and Find Full Text PDF

Thyroid hormone increased the percentage of fibers expressing fast-type sarcoplasmic reticulum Ca(2+)-ATPase in the slow rat soleus muscle from 17% in the hypothyroid to 100% in the hyperthyroid state. This was accompanied by a 12-fold increase in the fast-type Ca(2+)-ATPase protein content of soleus muscle homogenates, suggesting that also the amount of this protein per muscle fiber was increased. In contrast to the fast-type isoform, a decrease in the percentage of fibers expressing slow-type Ca(2+)-ATPase from 100% to 70% was observed in the transition from the hypothyroid to the hyperthyroid state.

View Article and Find Full Text PDF

In gastrocnemius muscle from newborn rats the mRNA for the fast sarcoplasmic reticulum (SR) Ca(2+)-ATPase isoform (SERCA1) comprised over 90% of total SR Ca(2+)-ATPase mRNA content and increased 5-fold between day 5 and 20 after birth, whereas in hypothyroid muscle the SERCA1 message level remained constant. Triiodothyronine (T3) treatment of 2-day-old euthyroid rats induced a precocious stimulation of SERCA1 mRNA levels, indicating that T3 is the determining factor in the stimulation of SERCA1 message levels and that this stimulation underlies the previously reported effect of the thyroid status on the neonatal development of SR Ca(2+)-ATPase activity. The low mRNA level for the slow SR Ca(2+)-ATPase isoform (SERCA2) was constant in both euthyroid and hypothyroid muscle development.

View Article and Find Full Text PDF

The effect of thyroid hormone (L-tri-iodothyronine; T3) on the cytosolic free Ca2+ concentration ([Ca2+]i) in L6 myotubes was studied at rest and during activation to explore the possible mediating role of [Ca2+]i in the T3-induced net synthesis of fast-type sarcoplasmic reticulum (SR) Ca(2+)-ATPase. The mean [Ca2+]i at rest was approx. 115 nM in myoblasts, control myotubes and T3-treated myotubes.

View Article and Find Full Text PDF

Net synthesis of the fast-type sarcoplasmic reticulum (SR) Ca2(+)-ATPase was studied in the muscle cell line L6AM using an immunochemical assay (e.l.i.

View Article and Find Full Text PDF