Publications by authors named "Harald Weinfurter"

Quantum mechanics imposes limits on the statistics of certain observables. Perhaps the most famous example is the uncertainty principle. Similar trade-offs also exist for the simultaneous violation of multiple Bell inequalities.

View Article and Find Full Text PDF

Device-independent quantum key distribution (DIQKD) enables the generation of secret keys over an untrusted channel using uncharacterized and potentially untrusted devices. The proper and secure functioning of the devices can be certified by a statistical test using a Bell inequality. This test originates from the foundations of quantum physics and also ensures robustness against implementation loopholes, thereby leaving only the integrity of the users' locations to be guaranteed by other means.

View Article and Find Full Text PDF

Quantum networks promise to provide the infrastructure for many disruptive applications, such as efficient long-distance quantum communication and distributed quantum computing. Central to these networks is the ability to distribute entanglement between distant nodes using photonic channels. Initially developed for quantum teleportation and loophole-free tests of Bell's inequality, recently, entanglement distribution has also been achieved over telecom fibres and analysed retrospectively.

View Article and Find Full Text PDF

Entanglement between stationary quantum memories and photonic channels is the essential resource for future quantum networks. Together with entanglement distillation, it will enable efficient distribution of quantum states. We report on the generation and observation of entanglement between a ^{87}Rb atom and a photon at telecom wavelength transmitted through up to 20 km of optical fiber.

View Article and Find Full Text PDF

The modification of the effect of interactions of a particle as a function of its preselected and postselected states is analyzed theoretically and experimentally. The universality property of this modification in the case of local interactions of a spatially preselected and postselected particle has been found. It allowed us to define an operational approach for the characterization of the presence of a quantum particle in a particular place: the way it modifies the effect of local interactions.

View Article and Find Full Text PDF

An experimental test of Bell's inequality allows ruling out any local-realistic description of nature by measuring correlations between distant systems. While such tests are conceptually simple, there are strict requirements concerning the detection efficiency of the involved measurements, as well as the enforcement of spacelike separation between the measurement events. Only very recently could both loopholes be closed simultaneously.

View Article and Find Full Text PDF

Certifying entanglement of a multipartite state is generally considered a demanding task. Since an N qubit state is parametrized by 4^{N}-1 real numbers, one might naively expect that the measurement effort of generic entanglement detection also scales exponentially with N. Here, we introduce a general scheme to construct efficient witnesses requiring a constant number of measurements independent of the number of qubits for states like, e.

View Article and Find Full Text PDF

Wire-grid polarisers are versatile and scalable components which can be engineered to achieve small sizes and extremely high extinction ratios. Yet the measured performances are always significantly below the predicted values obtained from numerical simulations. Here we report on a detailed comparison between theoretical and experimental performances.

View Article and Find Full Text PDF

Nonclassical correlations between measurement results make entanglement the essence of quantum physics and the main resource for quantum information applications. Surprisingly, there are n-particle states which do not exhibit n-partite correlations at all but still are genuinely n-partite entangled. We introduce a general construction principle for such states, implement them in a multiphoton experiment and analyze their properties in detail.

View Article and Find Full Text PDF

Common tools for obtaining physical density matrices in experimental quantum state tomography are shown here to cause systematic errors. For example, using maximum likelihood or least squares optimization to obtain physical estimates for the quantum state, we observe a systematic underestimation of the fidelity and an overestimation of entanglement. Such strongly biased estimates can be avoided using linear evaluation of the data or by linearizing measurement operators yielding reliable and computational simple error bounds.

View Article and Find Full Text PDF

Quantum state tomography suffers from the measurement effort increasing exponentially with the number of qubits. Here, we demonstrate permutationally invariant tomography for which, contrary to conventional tomography, all resources scale polynomially with the number of qubits both in terms of the measurement effort as well as the computational power needed to process and store the recorded data. We demonstrate the benefits of combining permutationally invariant tomography with compressed sensing by studying the influence of the pump power on the noise present in a six-qubit symmetric Dicke state, a case where full tomography is possible only for very high pump powers.

View Article and Find Full Text PDF

We introduce an experimental procedure for the detection of quantum entanglement of an unknown quantum state with a small number of measurements. The method requires neither a priori knowledge of the state nor a shared reference frame between the observers and can thus be regarded as a perfectly state-independent entanglement witness. The scheme starts with local measurements, possibly supplemented with suitable filtering, which essentially establishes the Schmidt decomposition for pure states.

View Article and Find Full Text PDF

Entanglement is the essential feature of quantum mechanics. Notably, observers of two or more entangled particles will find correlations in their measurement results that cannot be explained by classical statistics. To make it a useful resource, particularly for scalable long-distance quantum communication, the heralded generation of entanglement between distant massive quantum systems is necessary.

View Article and Find Full Text PDF

We present a simple but highly efficient source of polarization-entangled photons based on spontaneous parametric down-conversion (SPDC) in bulk periodically poled potassium titanyl phosphate crystals (PPKTP) pumped by a 405 nm laser diode. Utilizing one of the highest available nonlinear coefficients in a non-degenerate, collinear type-0 phase-matching configuration, we generate polarization entanglement via the crossed-crystal scheme and detect 0.64 million photon pair events/s/mW, while maintaining an overlap fidelity with the ideal Bell state of 0.

View Article and Find Full Text PDF

We experimentally demonstrate a general criterion to identify entangled states useful for the estimation of an unknown phase shift with a sensitivity higher than the shot-noise limit. We show how to exploit this entanglement on the examples of a maximum likelihood as well as of a Bayesian phase estimation protocol. Using an entangled four-photon state we achieve a phase sensitivity clearly beyond the shot-noise limit.

View Article and Find Full Text PDF

We present a fully integrated, ready-for-use quantum random number generator (QRNG) whose stochastic model is based on the randomness of detecting single photons in attenuated light. We show that often annoying deadtime effects associated with photomultiplier tubes (PMT) can be utilized to avoid postprocessing for bias or correlations. The random numbers directly delivered to a PC, generated at a rate of up to 50 Mbit/s, clearly pass all tests relevant for (physical) random number generators.

View Article and Find Full Text PDF

We report on the experimental observation and characterization of a six-photon entangled Dicke state. We obtain a fidelity as high as 0.654+/-0.

View Article and Find Full Text PDF

We report on the direct estimation of concurrence for mixed quantum states. The used method relies on joint measurements on two copies of an entangled state. In the experimental demonstration two polarization-entangled photon pairs emitted from spontaneous parametric down-conversion are analyzed together using a linear optics controlled phase gate.

View Article and Find Full Text PDF

A single linear-optical setup is used to observe an entire family of four-photon entangled states. This approach breaks with the inflexibility of present linear-optical setups usually designed for the observation of a particular multipartite entangled state only. The family includes several prominent entangled states that are known to be highly relevant for quantum information applications.

View Article and Find Full Text PDF

The variety of multipartite entangled states enables numerous applications in novel quantum information tasks. In order to compare the suitability of different states from a theoretical point of view, classifications have been introduced. Accordingly, here we derive criteria and demonstrate how to experimentally discriminate an observed state against the ones of certain other classes of multipartite entangled states.

View Article and Find Full Text PDF

We introduce a new quantum protocol for solving detectable Byzantine agreement (also called detectable broadcast) between three parties, and also for solving the detectable liar detection problem. The protocol is suggested by the properties of a four-qubit entangled state, and the classical part of the protocol is simpler than that of previous proposals. In addition, we present an experimental implementation of the protocol using four-photon entanglement.

View Article and Find Full Text PDF

Storage and distribution of quantum information are key elements of quantum information processing and future quantum communication networks. Here, using atom-photon entanglement as the main physical resource, we experimentally demonstrate the preparation of a distant atomic quantum memory. Applying a quantum teleportation protocol on a locally prepared state of a photonic qubit, we realized this so-called remote state preparation on a single, optically trapped 87Rb atom.

View Article and Find Full Text PDF

We report on the experimental implementation of a Bennett-Brassard 1984 (BB84) protocol type quantum key distribution over a 144 km free-space link using weak coherent laser pulses. Optimization of the link transmission was achieved with bidirectional active telescope tracking, and the security was ensured by employing decoy-state analysis. This enabled us to distribute a secure key at a rate of 12.

View Article and Find Full Text PDF

We show how hyperentanglement allows us to deterministically distinguish between all four polarization Bell states of two photons. In this proof-of-principle experiment, we employ the intrinsic time-energy correlation of photon pairs generated with high temporal definition in addition to the polarization entanglement obtained from parametric down-conversion. For the identification, no nonlinear optical elements or auxiliary photons are needed.

View Article and Find Full Text PDF