Ethylene oxide ("EtO") is an industrially made volatile organic compound and a known human carcinogen. There are few reliable reports of ambient EtO concentrations around production and end-use facilities, however, despite major exposure concerns. We present , fast (1 Hz), sensitive EtO measurements made during February 2023 across the southeastern Louisiana industrial corridor.
View Article and Find Full Text PDFReduced nitrogen (N) is central to global biogeochemistry, yet there are large uncertainties surrounding its sources and rate of cycling. Here, we present observations of gas-phase urea (CO(NH)) in the atmosphere from airborne high-resolution mass spectrometer measurements over the North Atlantic Ocean. We show that urea is ubiquitous in the lower troposphere in the summer, autumn, and winter but was not detected in the spring.
View Article and Find Full Text PDFIndoor gas-phase radical sources are poorly understood but expected to be much different from outdoors. Several potential radical sources were measured in a windowless, light-emitting diode (LED)-lit room in a college athletic facility over a 2 week period. Alternating measurements between the room air and the supply air of the heating, ventilation, and air-conditioning system allowed an assessment of sources.
View Article and Find Full Text PDFDark chamber experiments were conducted to study the SOA formed from the oxidation of α-pinene and Δ-carene under different peroxy radical (RO) fate regimes: RO + NO, RO + RO, and RO + HO. SOA mass yields from α-pinene oxidation were <1 to ∼25% and strongly dependent on available OA mass up to ∼100 μg m. The strong yield dependence of α-pinene oxidation is driven by absorptive partitioning to OA and not by available surface area for condensation.
View Article and Find Full Text PDFOrganic aerosols, a major constituent of fine particulate mass in megacities, can be directly emitted or formed from secondary processing of biogenic and anthropogenic volatile organic compound emissions. The complexity of volatile organic compound emission sources, speciation and oxidation pathways leads to uncertainties in the key sources and chemistry leading to formation of organic aerosol in urban areas. Historically, online measurements of organic aerosol composition have been unable to resolve specific markers of volatile organic compound oxidation, while offline analysis of markers focus on a small proportion of organic aerosol and lack the time resolution to carry out detailed statistical analysis required to study the dynamic changes in aerosol sources and chemistry.
View Article and Find Full Text PDFUnderstanding the sources and composition of organic aerosol (OA) in indoor environments requires rapid measurements, since many emissions and processes have short timescales. However, real-time molecular-level OA measurements have not been reported indoors. Here, we present quantitative measurements, at a time resolution of five seconds, of molecular ions corresponding to diverse aerosol-phase species, by applying extractive electrospray ionization mass spectrometry (EESI-MS) to indoor air analysis for the first time, as part of the highly instrumented HOMEChem field study.
View Article and Find Full Text PDFEnviron Sci Technol
November 2019
The chemical composition of indoor air at the University of Colorado, Boulder art museum was measured by a suite of gas- and particle-phase instruments. Over 80% of the total observed organic carbon (TOOC) mass (100 μg m) consisted of reduced compounds (carbon oxidation state, OS < -0.5) with high volatility (log * > 7) and low carbon number ( < 6).
View Article and Find Full Text PDFA 6-week study was conducted at the University of Colorado Art Museum, during which volatile organic compounds (VOCs), carbon dioxide (CO), ozone (O), nitric oxide (NO), nitrogen dioxide (NO), other trace gases, and submicron aerosol were measured continuously. These measurements were then analyzed using a box model to quantify the rates of major processes that transformed the composition of the air. VOC emission factors were quantified for museum occupants and their activities.
View Article and Find Full Text PDFWe present results from a high-resolution chemical ionization time-of-flight mass spectrometer (HRToF-CIMS), operated with two different thermal desorption inlets, designed to characterize the gas and aerosol composition. Data from two field campaigns at forested sites are shown. Particle volatility distributions are estimated using three different methods: thermograms, elemental formulas, and measured partitioning.
View Article and Find Full Text PDFGas-phase carboxylic acids are ubiquitous in ambient air, yet their indoor occurrence and abundance are poorly characterized. To fill this gap, we measured gas-phase carboxylic acids in real-time inside and outside of a university classroom using a high-resolution time-of-flight chemical ionization mass spectrometer (HRToF-CIMS) equipped with an acetate ion source. A wide variety of carboxylic acids were identified indoors and outdoors, including monoacids, diacids, hydroxy acids, carbonyl acids, and aromatic acids.
View Article and Find Full Text PDFGas-phase low volatility organic compounds (LVOC), produced from oxidation of isoprene 4-hydroxy-3-hydroperoxide (4,3-ISOPOOH) under low-NO conditions, were observed during the FIXCIT chamber study. Decreases in LVOC directly correspond to appearance and growth in secondary organic aerosol (SOA) of consistent elemental composition, indicating that LVOC condense (at OA below 1 μg m(-3)). This represents the first simultaneous measurement of condensing low volatility species from isoprene oxidation in both the gas and particle phases.
View Article and Find Full Text PDFPhotolabile nighttime radical reservoirs, such as nitrous acid (HONO) and nitryl chloride (ClNO(2)), contribute to the oxidizing potential of the atmosphere, particularly in early morning. We present the first vertically resolved measurements of ClNO(2), together with vertically resolved measurements of HONO. These measurements were acquired during the California Nexus (CalNex) campaign in the Los Angeles basin in spring 2010.
View Article and Find Full Text PDFBand strengths for the second (3nuOH) and third (4nuOH) overtones of the OH stretch vibration of peroxynitric acid, HO2NO2 (PNA) in the gas-phase were measured using Cavity Ring-Down Spectroscopy (CRDS). Both OH overtone transitions show diffuse smoothly varying symmetrical absorption profiles without observable rotational structure. Integrated band strengths (base e) at 296 K were determined to be S(3nuOH) = (5.
View Article and Find Full Text PDFAbsorption cross sections for the A 2A'' (0,9(0),0) <-- X 2A' (0,0(1),0) band of HCO were determined at 295 K using pulsed laser photolysis combined with cavity ring-down spectroscopy. Formyl radicals (HCO) were produced from the reaction of atomic chlorine, generated by photolysis of Cl2 at 335 nm, with formaldehyde. The concentration of HCO was calibrated using two independent photochemical methods.
View Article and Find Full Text PDFQuantum yields, phi, of OH and HO2 in the ultraviolet photolysis of HO2NO2 (peroxynitric acid, PNA) at 193 and 248 nm and that of NO3 at 193, 248 and 308 nm are reported. Quantum yields were measured using pulsed excimer laser photolysis combined with pulsed laser induced fluorescence (PLIF) detection of OH radicals and cavity ring-down (CRD) detection of NO3 radicals. HO2 radicals were quantified by converting them to OH via the HO2 + NO --> OH + NO2 reaction and detecting OH.
View Article and Find Full Text PDF