The formation of a tube-like structure is a basic step in the making of functional hearts in vertebrates and invertebrates and therefore, its understanding provides important information on heart development and function. In Drosophila, the cardiac tube originates from two bilateral rows of dorsally migrating cells. On meeting at the dorsal midline, coordinated changes in cell shape and adhesive properties transform the two sheets of cells into a linear tube.
View Article and Find Full Text PDFCentromeres form a chromosomal platform for the assembly of the kinetochores, which are required for orderly chromosome segregation. Assembly of both centromeres and kinetochores proceeds by a step-by-step mechanism that is regulated in time and space. It has been suggested that the regulated nuclear import of centromeric proteins is involved in this process.
View Article and Find Full Text PDFMYST family histone acetyltransferases play important roles in gene regulation. Here, we have characterized the Drosophila MYST histone acetyltransferase (HAT) encoded by cg1894, whose closest homolog is Drosophila MOF, and which we have termed MYST5. We found it localized to a large number of interbands as well as to the telomeres of polytene chromosomes, and it showed strong colocalization with the interband protein Z4/Putzig and RNA polymerase II.
View Article and Find Full Text PDFEukaryotic chromatin is organized in contiguous domains that differ in protein binding, histone modifications, transcriptional activity, and in their degree of compaction. Genome-wide comparisons suggest that, overall, the chromatin organization is similar in different cells within an organism. Here, we compare the structure and activity of the 61C7-61C8 interval in polytene and diploid cells of Drosophila.
View Article and Find Full Text PDFDrosophila polytene interphase chromosomes provide an ideal test system to study the rules that define the structure of chromatin domains. We established a transgenic condensed chromatin domain cassette for the insertion of large pieces of DNA by site-specific recombination. Insertion of this cassette into open chromatin generated a condensed domain, visible as an extra band on polytene chromosomes.
View Article and Find Full Text PDFThe conserved band-interband pattern is thought to reflect the looped-domain organization of insect polytene chromosomes. Previously, we have shown that the chromodomain protein Chriz and the zinc-finger protein Z4 are essentially required for the maintenance of polytene chromosome structure. Here we show that both proteins form a complex that recruits the JIL-1 kinase to polytene chromosomes, enabling local H3S10 phosphorylation of interband nucleosomal histones.
View Article and Find Full Text PDFThe PEV-modifying winged-helix/forkhead domain transcription factor JUMU of Drosophila is an essential protein of pleiotropic function. The correct gene dose of jumu is required for nucleolar integrity and correct nucleolus function. Overexpression of jumu results in bloating of euchromatic chromosome arms, displacement of the JUMU protein from the chromocenter and the nucleolus, fragile weak points, and disrupted chromocenter of polytene chromosomes.
View Article and Find Full Text PDFThe MYST histone acetyltransferase (HAT) dTip60 is part of a multimeric protein complex that unites both HAT and chromatin remodeling activities. Here, we sought to gain insight into the biological functions of dTip60. Strong ubiquitous dTip60 knock-down in flies was lethal, whereas knock-down in the wing imaginal disk led to developmental defects in the wing.
View Article and Find Full Text PDFFor the compact Drosophila genome, several factors mediating insulator function, such as su(Hw) and dCTCF, have been identified. Recent analyses showed that both these insulator-binding factors are functionally dependent on the same cofactor, CP190. Here we analysed genome-wide binding of CP190 and dCTCF.
View Article and Find Full Text PDFInsulator sequences guide the function of distantly located enhancer elements to the appropriate target genes by blocking inappropriate interactions. In Drosophila, five different insulator binding proteins have been identified, Zw5, BEAF-32, GAGA factor, Su(Hw) and dCTCF. Only dCTCF has a known conserved counterpart in vertebrates.
View Article and Find Full Text PDFDosage compensation in Drosophila is dependent on MSL proteins and involves hypertranscription of the male X chromosome, which ensures equal X-linked gene expression in both sexes. Here, we report the purification of enzymatically active MSL complexes from Drosophila embryos, Schneider cells, and human HeLa cells. We find a stable association of the histone H4 lysine 16-specific acetyltransferase MOF with the RNA/protein containing MSL complex as well as with an evolutionary conserved complex.
View Article and Find Full Text PDFThe subdivision of polytene chromosomes into bands and interbands suggests a structural chromatin organization that is related to the formation of functional domains of gene expression. We made use of the antibody Z4 to gain insight into this level of chromosomal structure, as the Z4 antibody mirrors this patterning by binding to an antigen that is present in most interbands. The Z4 gene encodes a protein with seven zinc fingers, it is essential for fly development and acts in a dose-dependent manner on the development of several tissues.
View Article and Find Full Text PDFWe used the UAS/GAL4 two component system to induce mRNA interference (mRNAi) during Drosophila development. In the adult eye the expression from white transgenes or the resident white locus is significantly repressed by the induction of UAS-wRNAi using different GAL4 expressing strains. By induced RNAi we demonstrate that the conserved nuclear protein Bx42 is essential for the development of many tissues.
View Article and Find Full Text PDF