Publications by authors named "Harald P Pfeiffer"

The inspiral phasing of binary black holes at intermediate mass ratios (m_{2}/m_{1}∼10^{-3}) is important for gravitational wave observations, but not accessible to standard modeling techniques: The accuracy of the small mass-ratio (SMR) expansion is unknown at intermediate mass ratios, whereas numerical relativity simulations cannot reach this regime. This article assesses the accuracy of the SMR expansion by extracting the first three terms of the SMR expansion from numerical relativity data for nonspinning, quasicircular binaries. We recover the leading term predicted by SMR theory and obtain a robust prediction of the next-to-leading term.

View Article and Find Full Text PDF

The redshift factor z is an invariant quantity of fundamental interest in post-Newtonian and self-force descriptions of compact binaries. It connects different approximation schemes, and plays a central role in the first law of binary black hole mechanics, which links local quantities to asymptotic measures of energy and angular momentum in these systems. Through this law, the redshift factor is conjectured to have a close relation to the surface gravity of the event horizons of black holes in circular orbits.

View Article and Find Full Text PDF

Extracting the unique information on ultradense nuclear matter from the gravitational waves emitted by merging neutron-star binaries requires robust theoretical models of the signal. We develop a novel effective-one-body waveform model that includes, for the first time, dynamic (instead of only adiabatic) tides of the neutron star as well as the merger signal for neutron-star-black-hole binaries. We demonstrate the importance of the dynamic tides by comparing our model against new numerical-relativity simulations of nonspinning neutron-star-black-hole binaries spanning more than 24 gravitational-wave cycles, and to other existing numerical simulations for double neutron-star systems.

View Article and Find Full Text PDF

We present the first numerical-relativity simulation of a compact-object binary whose gravitational waveform is long enough to cover the entire frequency band of advanced gravitational-wave detectors, such as LIGO, Virgo, and KAGRA, for mass ratio 7 and total mass as low as 45.5M_{⊙}. We find that effective-one-body models, either uncalibrated or calibrated against substantially shorter numerical-relativity waveforms at smaller mass ratios, reproduce our new waveform remarkably well, with a negligible loss in detection rate due to modeling error.

View Article and Find Full Text PDF

This Letter presents a publicly available catalog of 174 numerical binary black hole simulations following up to 35 orbits. The catalog includes 91 precessing binaries, mass ratios up to 8∶1, orbital eccentricities from a few percent to 10(-5), black hole spins up to 98% of the theoretical maximum, and radiated energies up to 11.1% of the initial mass.

View Article and Find Full Text PDF

The general relativistic (Mercury-type) periastron advance is calculated here for the first time with exquisite precision in full general relativity. We use accurate numerical relativity simulations of spinless black-hole binaries with mass ratios 1/8≤m(1)/m(2)≤1 and compare with the predictions of several analytic approximation schemes. We find the effective-one-body model to be remarkably accurate and, surprisingly, so also the predictions of self-force theory [replacing m(1)/m(2)→m(1)m(2)/(m(1)+m(2))(2)].

View Article and Find Full Text PDF

The conformal thin-sandwich (CTS) equations are a set of four of the Einstein equations, which generalize the Laplace-Poisson equation of Newton's theory. We examine numerically solutions of the CTS equations describing perturbed Minkowski space, and find only one solution. However, we find two distinct solutions, one even containing a black hole, when the lapse is determined by a fifth elliptic equation through specification of the mean curvature.

View Article and Find Full Text PDF