Publications by authors named "Harald Oberhofer"

In this work, we use a Bayesian optimization (BO) algorithm to sample the space of covalent organic framework (COF) components aimed at the design of COFs with a high hole conductivity. COFs are crystalline, often porous coordination polymers, where organic molecular units-called building blocks (BBs)-are connected by covalent bonds. Even though we limit ourselves here to a space of three-fold symmetric BBs forming two-dimensional COF sheets, their design space is still much too large to be sampled by traditional means through evaluating the properties of each element in this space from first principles.

View Article and Find Full Text PDF

Correction for 'Photoelectron angular distributions as sensitive probes of surfactant layer structure at the liquid-vapor interface' by Rémi Dupuy , , 2022, , 4796-4808, https://doi.org/10.1039/D1CP05621B.

View Article and Find Full Text PDF

We study the electronic coupling between an adsorbate and a metal surface by calculating tunneling matrix elements Had directly from first principles. For this, we employ a projection of the Kohn-Sham Hamiltonian upon a diabatic basis using a version of the popular projection-operator diabatization approach. An appropriate integration of couplings over the Brillouin zone allows the first calculation of a size-convergent Newns-Anderson chemisorption function, a coupling-weighted density of states measuring the line broadening of an adsorbate frontier state upon adsorption.

View Article and Find Full Text PDF

Smart, responsive materials are required in various advanced applications ranging from anti-counterfeiting to autonomous sensing. Colloidal crystals are a versatile material class for optically based sensing applications owing to their photonic stopband. A careful combination of materials synthesis and colloidal mesostructure rendered such systems helpful in responding to stimuli such as gases, humidity, or temperature.

View Article and Find Full Text PDF

With a view on adding to their use in trace gas sensing, we perform a combined experimental and theoretical study of the change of the conductivity of a metal organic framework (iron (1,2,3)-triazolate, Fe(ta)) with the uptake of chemically inert gases. To align our first-principles calculations with experimental measurements, we perform an ensemble average over different microscopic arrangements of the gas molecules in the pores of the metal-organic framework (MOF). Up to the experimentally reachable limit of gas uptake, we find a good agreement between both approaches.

View Article and Find Full Text PDF

The structure and chemical composition are the key parameters influencing the properties of organic thin films deposited on inorganic substrates. Such films often display structures that substantially differ from the bulk, and the substrate has a relevant influence on their polymorphism. In this work, we illuminate the role of the substrate by studying its influence on -benzoquinone on two different substrates, Ag(111) and graphene.

View Article and Find Full Text PDF

The characterization of liquid-vapor interfaces at the molecular level is an important underpinning for a basic understanding of fundamental heterogeneous processes in many areas, such as atmospheric science. Here we use X-ray photoelectron spectroscopy to study the adsorption of a model surfactant, octanoic acid, at the water-gas interface. In particular, we examine the information contained in photoelectron angular distributions and show that information about the relative depth of molecules and functional groups within molecules can be obtained from these measurements.

View Article and Find Full Text PDF

The multipole-expansion (MPE) model is an implicit solvation model used to efficiently incorporate solvent effects in quantum chemistry. Even within the recent direct approach, the multipole basis used in MPE to express the dielectric response still solves the electrostatic problem inefficiently or not at all for solutes larger than approximately ten non-hydrogen atoms. In existing MPE parametrizations, the resulting systematic underestimation of the electrostatic solute-solvent interaction is presently compensated for by a systematic overestimation of nonelectrostatic attractive interactions.

View Article and Find Full Text PDF

Implicit solvation is an effective, highly coarse-grained approach in atomic-scale simulations to account for a surrounding liquid electrolyte on the level of a continuous polarizable medium. Originating in molecular chemistry with finite solutes, implicit solvation techniques are now increasingly used in the context of first-principles modeling of electrochemistry and electrocatalysis at extended (often metallic) electrodes. The prevalent ansatz to model the latter electrodes and the reactive surface chemistry at them through slabs in periodic boundary condition supercells brings its specific challenges.

View Article and Find Full Text PDF

The versatility of organic molecules generates a rich design space for organic semiconductors (OSCs) considered for electronics applications. Offering unparalleled promise for materials discovery, the vastness of this design space also dictates efficient search strategies. Here, we present an active machine learning (AML) approach that explores an unlimited search space through consecutive application of molecular morphing operations.

View Article and Find Full Text PDF

We address a long-standing ambiguity in the DFT-based projection-operator diabatization method for charge transfer couplings in donor-acceptor systems. It has long been known that the original method yields diabats which are not strictly fragment-localized due to mixing arising from basis-set orthogonalization. We demonstrate that this can contribute to a severe underestimation of coupling strengths and a spurious dependence on the choice of the basis set.

View Article and Find Full Text PDF

Zero strain insertion, high cycling stability, and a stable charge/discharge plateau are promising properties rendering Lithium Titanium Oxide (LTO) a possible candidate for an anode material in solid state Li ion batteries. However, the use of pristine LTO in batteries is rather limited due to its electronically insulating nature. In contrast, reduced LTO shows an electronic conductivity several orders of magnitude higher.

View Article and Find Full Text PDF

The treatment of electrostatic interactions is a key ingredient in the force field-based simulation of condensed phase systems. Most approaches used fixed, site-specific point charges. Yet, it is now clear that many applications of force fields (FFs) demand more sophisticated treatments, prompting the implementation of charge equilibration methods in polarizable FFs to allow the redistribution of charge within the system.

View Article and Find Full Text PDF

The metal-organic framework [Fe(ta)] (Hta = 1-1,2,3-triazole) containing Fe(II) ions and 1,2,3-triazolate ligands shows a reversible phase transition while retaining the cubic crystal symmetry and space group 3 (no. 227). The phase transition between room temperature (RT-[Fe(ta)]; = 16.

View Article and Find Full Text PDF

Lithium titanium oxide LiTiO is an intriguing anode material promising particularly long-life batteries, due to its remarkable phase stability during (dis)charging of the cell. However, its usage is limited by its low intrinsic electronic conductivity. Introducing oxygen vacancies can be one method for overcoming this drawback, possibly by altering the charge carrier transport mechanism.

View Article and Find Full Text PDF

Data science and machine learning in materials science require large datasets of technologically relevant molecules or materials. Currently, publicly available molecular datasets with realistic molecular geometries and spectral properties are rare. We here supply a diverse benchmark spectroscopy dataset of 61,489 molecules extracted from organic crystals in the Cambridge Structural Database (CSD), denoted OE62.

View Article and Find Full Text PDF

The last 20 years of force field development have shown that even well parametrized classical models need to at least approximate the dielectric response of molecular systems-based, e.g., on atomic polarizabilities-in order to correctly render their structural and dynamic properties.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) are known for their vast design space of possible structures, covering a wide range of often porous crystal structures and physical properties. Electrical conductivity, though, was-until very recently-not a feature usually associated with MOFs. On the other hand, well defined porous media such as MOFs, showing some measure of conductivity, could find uses in a huge number of fields ranging from electrochemistry to electronics and sensing.

View Article and Find Full Text PDF
Article Synopsis
  • Modern materials discovery leverages computational screening of extensive databases, combining experimental and virtual data to compute key microscopic quantities for potential materials.
  • The study presents a Chemical Space Network (CSN) visualization of over 64,000 molecular crystals, highlighting structural similarities and providing insight into organic semiconductor design rules.
  • By mapping clusters of similar molecules, the CSN reveals regions with high potential for optimization, particularly those with promising properties yet unexplored in chemical space.
View Article and Find Full Text PDF

We implemented the popular Hubbard density-functional theory + U (DFT+U) method in its spherically averaged form in the all-electron, full-potential DFT code FHI-aims. There, electronic states are expressed on a basis of highly localized numeric atomic orbitals (NAO), which straightforwardly lend themselves as projector functions for the DFT+U correction, yielding the necessary occupations of the correlated Hubbard subspace at no additional cost. We establish the efficacy of our implementation on the prototypical bulk NiO and obtain the well-known band gap opening effect of DFT+U.

View Article and Find Full Text PDF

In computer simulations of solvation effects on chemical reactions, continuum modeling techniques regain popularity as a way to efficiently circumvent an otherwise costly sampling of solvent degrees of freedom. As effective techniques, such implicit solvation models always depend on a number of parameters that need to be determined earlier. In the past, the focus lay mostly on an accurate parametrization of water models.

View Article and Find Full Text PDF

We present Genarris, a Python package that performs configuration space screening for molecular crystals of rigid molecules by random sampling with physical constraints. For fast energy evaluations, Genarris employs a Harris approximation, whereby the total density of a molecular crystal is constructed via superposition of single molecule densities. Dispersion-inclusive density functional theory is then used for the Harris density without performing a self-consistency cycle.

View Article and Find Full Text PDF
Article Synopsis
  • Efficient electronic structure methods have led to the development of effective continuum solvation methods that incorporate solvent effects into simulations while reducing costly solvent sampling.
  • The multipole moment expansion (MPE) model, recently updated for modern needs, allows for cost-effective solutions of electrostatic responses in a medium surrounding a solute through an all-electron code.
  • The effectiveness of the MPE model has been validated through various tests, including approximately 140,000 2D cases and comparisons with experimental data, showing high accuracy with minimal computational overhead.
View Article and Find Full Text PDF

The booming field of molecular electronics has fostered a surge of computational research on electronic properties of organic molecular solids. In particular, with respect to a microscopic understanding of transport and loss mechanisms, theoretical studies assume an ever-increasing role. Owing to the tremendous diversity of organic molecular materials, a great number of computational methods have been put forward to suit every possible charge transport regime, material, and need for accuracy.

View Article and Find Full Text PDF