Publications by authors named "Harald M Albers"

Every year three million people die as a result of bacterial infections, and this number may further increase due to resistance to current antibiotics. These antibiotics target almost all essential bacterial processes, leaving only a few new targets for manipulation. The host proteome has many more potential targets for manipulation in order to control bacterial infection, as exemplified by the observation that inhibiting the host kinase Akt supports the elimination of different intracellular bacteria including Salmonella and M.

View Article and Find Full Text PDF

Objective: Lysophosphatidic acid (LPA) is a bioactive lipid that binds to a group of cell surface G protein-coupled receptors (LPA receptors 1-6 [LPA1-6 ]) and has been implicated as an important mediator of angiogenesis, inflammation, and cancer growth. This study was undertaken to analyze the effects of LPA1 on the development of arthritis.

Methods: Expression of LPA receptors on synovial tissue was analyzed by immunohistochemistry and quantitative reverse transcription-polymerase chain reaction.

View Article and Find Full Text PDF

Lymphocyte extravasation from the high endothelial venules (HEVs) of lymph nodes is crucial for the maintenance of immune homeostasis, but its molecular mechanism remains largely unknown. In this article, we report that lymphocyte transmigration across the basal lamina of the HEVs is regulated, at least in part, by autotaxin (ATX) and its end-product, lysophosphatidic acid (LPA). ATX is an HEV-associated ectoenzyme that produces LPA from lysophosphatidylcholine (LPC), which is abundant in the systemic circulation.

View Article and Find Full Text PDF

Left-right (L-R) patterning is essential for proper organ morphogenesis and function. Calcium fluxes in dorsal forerunner cells (DFCs) are known to regulate the formation of Kupffer's vesicle (KV), a central organ for establishing L-R asymmetry in zebrafish. Here, we identify the lipid mediator lysophosphatidic acid (LPA) as a regulator of L-R asymmetry in zebrafish embryos.

View Article and Find Full Text PDF

Brown adipose tissue is a thermogenic organ that dissipates stored energy as heat to maintain body temperature. This process may also provide protection from development of diet-induced obesity. We report that the bioactive lipid mediator lysophosphatidic acid (LPA) markedly decreases differentiation of cultured primary brown adipocyte precursors, whereas potent selective inhibitors of the LPA-generating enzyme autotaxin (ATX) promote differentiation.

View Article and Find Full Text PDF

Autotaxin (ATX) is a secreted phosphodiesterase that hydrolyzes the abundant phospholipid lysophosphatidylcholine (LPC) to produce lysophosphatidic acid (LPA). The ATX-LPA signaling axis has been implicated in inflammation, fibrosis, and tumor progression, rendering ATX an attractive drug target. We recently described a boronic acid-based inhibitor of ATX, named HA155 (1).

View Article and Find Full Text PDF

The supramolecular oligomerization of three water-soluble C(3)-symmetrical discotic molecules is reported. The compounds all possess benzene-1,3,5-tricarboxamide cores and peripheral Gd(III)-DTPA (diethylene triamine pentaacetic acid) moieties, but differ in their linker units and thus in their propensity to undergo secondary interactions in H(2)O. The self-assembly behavior of these molecules was studied in solution using circular dichroism, UV/Vis spectroscopy, nuclear magnetic resonance, and cryogenic transmission electron microscopy.

View Article and Find Full Text PDF

Autotaxin (ATX, also known as ectonucleotide pyrophosphatase/phosphodiesterase-2, ENPP2) is a secreted lysophospholipase D that generates the lipid mediator lysophosphatidic acid (LPA), a mitogen and chemoattractant for many cell types. ATX-LPA signaling is involved in various pathologies including tumor progression and inflammation. However, the molecular basis of substrate recognition and catalysis by ATX and the mechanism by which it interacts with target cells are unclear.

View Article and Find Full Text PDF

Autotaxin (ATX), or ecto-nucleotide pyrophosphatase/phosphodiesterase 2 (ENPP2), is a secreted lysophospholipase D that hydrolyses lysophosphatidylcholine into the lipid mediator lysophosphatidic acid (LPA), a mitogen and chemoattractant for many cell types. ATX has been implicated in tumour progression and inflammation, and might serve as a biomarker. Here we describe the development of a fluorescent activity-based probe that covalently binds to the active site of ATX.

View Article and Find Full Text PDF

Autotaxin (ATX) is an extracellular enzyme that hydrolyzes lysophosphatidylcholine (LPC) to produce the lipid mediator lysophosphatidic acid (LPA). The ATX-LPA signaling axis has been implicated in diverse physiological and pathological processes, including vascular development, inflammation, fibrotic disease, and tumor progression. Therefore, targeting ATX with small molecule inhibitors is an attractive therapeutic strategy.

View Article and Find Full Text PDF

Autotaxin (ATX) is a secreted nucleotide pyrophosphatase/phosphodiesterase that functions as a lysophospholipase D to produce the lipid mediator lysophosphatidic acid (LPA), a mitogen, chemoattractant, and survival factor for many cell types. The ATX-LPA signaling axis has been implicated in angiogenesis, chronic inflammation, fibrotic diseases and tumor progression, making this system an attractive target for therapy. However, potent and selective nonlipid inhibitors of ATX are currently not available.

View Article and Find Full Text PDF