Publications by authors named "Harald Kvaalen"

Pathogen challenge of tree sapwood induces the formation of reaction zones with antimicrobial properties such as elevated pH and cation content. Many fungi lower substrate pH by secreting oxalic acid, its conjugate base oxalate being a reductant as well as a chelating agent for cations. To examine the role of oxalic acid in pathogenicity of white-rot fungi, we conducted spatial quantification of oxalate, transcript levels of related fungal genes, and element concentrations in heartwood of Norway spruce challenged naturally by Heterobasidion parviporum.

View Article and Find Full Text PDF

Two mature clones of Norway spruce (Picea abies (L.) Karst.) that have previously been shown to have differential degrees of resistance towards the necrotrophic pathogen Heterobasidion parviporum (Niemelä & Korhonen) were compared with respect to the primed defense expression of transcripts related to biosynthesis of lignin, stilbenes and other phenolic compounds from one year to the next.

View Article and Find Full Text PDF

Background: NB-LRR resistance proteins are involved in recognizing pathogens and other exogenous stressors in plants. Resistance proteins are the first step in induced defence responses and a better understanding of their regulation is important to understand the mechanisms of plant defence. Much of the post-transcriptional regulation in plants is controlled by microRNAs (miRNA).

View Article and Find Full Text PDF

Heterobasidion parviporum, a common pathogenic white-rot fungus in managed Norway spruce forests in northern and central Europe, causes extensive decay columns within stem heartwood of the host tree. Infected trees combat the lateral spread of decay by bordering the heartwood with a fungistatic reaction zone characterized by elevated pH and phenol content. To examine the mode of fungal feeding in the reaction zone of mature Norway spruce trees naturally infected by H.

View Article and Find Full Text PDF

In Norway spruce, a fungistatic reaction zone with a high pH and enrichment of phenolics is formed in the sapwood facing heartwood colonized by the white-rot fungus Heterobasidion parviporum. Fungal penetration of the reaction zone eventually results in expansion of this xylem defense. To obtain information about mechanisms operating upon heartwood and reaction zone colonization by the pathogen, hyphal growth and wood degradation were investigated using real-time PCR, microscopy, and comparative wood density analysis of naturally colonized trees with extensive stem decay.

View Article and Find Full Text PDF

It has been shown previously that height growth and bud phenology are influenced by the temperature during zygotic embryogenesis in Picea abies. To test whether this phenomenon operates within individual plants, clones produced through somatic embryogenesis were used. Seeds were from a full-sib family produced in both a cold (outdoor) and a warm (inside a glasshouse) environment.

View Article and Find Full Text PDF

We studied the defense reactions of 33-year-old susceptible and resistant clones of Norway spruce (Picea abies (L.) Karst.) to the major root-rot fungus Heterobasidion annosum (Fr.

View Article and Find Full Text PDF

Pathogen colonization and transcript levels of three host chitinases, putatively representing classes I, II, and IV, were monitored with real-time PCR after wounding and bark infection by Heterobasidion annosum in 32-year-old trees of Norway spruce (Picea abies) with low (clone 409) or high (clone 589) resistance to this pathogen. Three days after inoculation, comparable colonization levels were observed in both clones in the area immediately adjacent to inoculation. At 14 days after infection, pathogen colonization was restricted to the area immediately adjacent to the site of inoculation for clone 589 but had progressed further into the host tissue in clone 409.

View Article and Find Full Text PDF

A multiplex real-time PCR assay was developed to monitor the dynamics of the Picea abies-Heterobasidion annosum pathosystem. Tissue cultures and 32-year-old trees with low or high resistance to this pathogen were used as the host material. Probes and primers were based on a laccase gene for the pathogen and a polyubiquitin gene for the host.

View Article and Find Full Text PDF