Importance: It is uncertain to what extent established cardiovascular risk factors are associated with venous thromboembolism (VTE).
Objective: To estimate the associations of major cardiovascular risk factors with VTE, ie, deep vein thrombosis and pulmonary embolism.
Design, Setting, And Participants: This study included individual participant data mostly from essentially population-based cohort studies from the Emerging Risk Factors Collaboration (ERFC; 731 728 participants; 75 cohorts; years of baseline surveys, February 1960 to June 2008; latest date of follow-up, December 2015) and the UK Biobank (421 537 participants; years of baseline surveys, March 2006 to September 2010; latest date of follow-up, February 2016).
Aims: There is debate about the optimum algorithm for cardiovascular disease (CVD) risk estimation. We conducted head-to-head comparisons of four algorithms recommended by primary prevention guidelines, before and after 'recalibration', a method that adapts risk algorithms to take account of differences in the risk characteristics of the populations being studied.
Methods And Results: Using individual-participant data on 360 737 participants without CVD at baseline in 86 prospective studies from 22 countries, we compared the Framingham risk score (FRS), Systematic COronary Risk Evaluation (SCORE), pooled cohort equations (PCE), and Reynolds risk score (RRS).
Background: There is debate about the value of assessing levels of C-reactive protein (CRP) and other biomarkers of inflammation for the prediction of first cardiovascular events.
Methods: We analyzed data from 52 prospective studies that included 246,669 participants without a history of cardiovascular disease to investigate the value of adding CRP or fibrinogen levels to conventional risk factors for the prediction of cardiovascular risk. We calculated measures of discrimination and reclassification during follow-up and modeled the clinical implications of initiation of statin therapy after the assessment of CRP or fibrinogen.
Context: The value of assessing various emerging lipid-related markers for prediction of first cardiovascular events is debated.
Objective: To determine whether adding information on apolipoprotein B and apolipoprotein A-I, lipoprotein(a), or lipoprotein-associated phospholipase A2 to total cholesterol and high-density lipoprotein cholesterol (HDL-C) improves cardiovascular disease (CVD) risk prediction.
Design, Setting, And Participants: Individual records were available for 165,544 participants without baseline CVD in 37 prospective cohorts (calendar years of recruitment: 1968-2007) with up to 15,126 incident fatal or nonfatal CVD outcomes (10,132 CHD and 4994 stroke outcomes) during a median follow-up of 10.
One difficulty in performing meta-analyses of observational cohort studies is that the availability of confounders may vary between cohorts, so that some cohorts provide fully adjusted analyses while others only provide partially adjusted analyses. Commonly, analyses of the association between an exposure and disease either are restricted to cohorts with full confounder information, or use all cohorts but do not fully adjust for confounding. We propose using a bivariate random-effects meta-analysis model to use information from all available cohorts while still adjusting for all the potential confounders.
View Article and Find Full Text PDFMany long-term prospective studies have reported on associations of cardiovascular diseases with circulating lipid markers and/or inflammatory markers. Studies have not, however, generally been designed to provide reliable estimates under different circumstances and to correct for within-person variability. The Emerging Risk Factors Collaboration has established a central database on over 1.
View Article and Find Full Text PDFContext: Plasma fibrinogen levels may be associated with the risk of coronary heart disease (CHD) and stroke.
Objective: To assess the relationships of fibrinogen levels with risk of major vascular and with risk of nonvascular outcomes based on individual participant data.
Data Sources: Relevant studies were identified by computer-assisted searches, hand searches of reference lists, and personal communication with relevant investigators.