Concepts of localized contacts and junctions through surface passivation layers are already advantageously applied in Si wafer-based photovoltaic technologies. For Cu(In,Ga)Se2 thin film solar cells, such concepts are generally not applied, especially at the heterojunction, because of the lack of a simple method yielding features with the required size and distribution. Here, we show a novel, innovative surface nanopatterning approach to form homogeneously distributed nanostructures (<30 nm) on the faceted, rough surface of polycrystalline chalcogenide thin films.
View Article and Find Full Text PDFSince incandescent light bulbs have been phased out in the European Union from 2009, the use of fluorescent lamps has drastically increased as a reliable, more energy-efficient and cost-effective alternative. State-of-the-art fluorescent lamps are dependent on mercury/mercury alloys, posing a risk for the consumer and the environment, and appropriate waste management is challenging. Consequently analytical methods to determine possible mercury species (non-gaseous/gaseous) in these lamps are of need.
View Article and Find Full Text PDFBiomethylation and volatilization of trace elements may contribute to their redistribution in the environment. However, quantification of volatile, methylated species in the environment is complicated by a lack of straightforward and field-deployable air sampling methods that preserve element speciation. This paper presents a robust and versatile gas trapping method for the simultaneous preconcentration of volatile selenium (Se), sulfur (S), and arsenic (As) species.
View Article and Find Full Text PDFThin-film photovoltaic devices based on chalcopyrite Cu(In,Ga)Se2 (CIGS) absorber layers show excellent light-to-power conversion efficiencies exceeding 20%. This high performance level requires a small amount of alkaline metals incorporated into the CIGS layer, naturally provided by soda lime glass substrates used for processing of champion devices. The use of flexible substrates requires distinct incorporation of the alkaline metals, and so far mainly Na was believed to be the most favourable element, whereas other alkaline metals have resulted in significantly inferior device performance.
View Article and Find Full Text PDFRoll-to-roll manufacturing of CdTe solar cells on flexible metal foil substrates is one of the most attractive options for low-cost photovoltaic module production. However, various efforts to grow CdTe solar cells on metal foil have resulted in low efficiencies. This is caused by the fact that the conventional device structure must be inverted, which imposes severe restrictions on device processing and consequently limits the electronic quality of the CdTe layer.
View Article and Find Full Text PDFUtilization of metallic engineered nanoparticles (ENP) is progressing rapidly; therefore, characterization of their most important properties, e.g., size/mass, elemental composition, and number concentration, is inevitable and currently uses a set of different techniques.
View Article and Find Full Text PDFDischarge of silver nanoparticles (Ag-NP) from textiles and cosmetics, todays major application areas for metallic Ag-NP, into wastewater is inevitable. Transformation and removal processes in sewers and wastewater treatment plants (WWTP) will determine the impact of Ag-NP on aquatic and terrestrial environments, via the effluents of the WWTP and via the use of digested sludge as fertilizer. We thus conducted experiments addressing the behavior of Ag-NP in sewers and in WWTP.
View Article and Find Full Text PDFBacklight Cold Cathode Fluorescence Lamps (B-CCFLs) are already applied in many electronic consumer products such as LCD screens, flat screen TVs, and laptop monitors. In consequence, an increase of such products entering the waste streams can be expected in the near future. As a result of the mercury (Hg) employed in such lamps, the development of recycling techniques to create a best practical environmental option for appropriate end-of-life strategies are necessary.
View Article and Find Full Text PDFIn this work we discuss about the method development, applicability and limitations of an asymmetric flow field flow fractionation (A4F) system in combination with a multi-detector setup consisting of UV/vis, light scattering, and inductively coupled plasma mass spectrometry (ICPMS). The overall aim was to obtain a size dependent-, element specific-, and quantitative method appropriate for the characterization of metallic engineered nanoparticle (ENP) dispersions. Thus, systematic investigations of crucial method parameters were performed by employing well characterized Au nanoparticles (Au-NPs) as a defined model system.
View Article and Find Full Text PDFWe investigated the behavior of metallic silver nanoparticles (Ag-NP) in a pilot wastewater treatment plant (WWTP) fed with municipal wastewater. The treatment plant consisted of a nonaerated and an aerated tank and a secondary clarifier. The average hydraulic retention time including the secondary clarifier was 1 day and the sludge age was 14 days.
View Article and Find Full Text PDFIn this study we investigate the release of metallic silver nanoparticles (Ag-NP) from paints used for outdoor applications. A facade panel mounted on a model house was exposed to ambient weather conditions over a period of one year. The runoff volume of individual rain events was determined and the silver and titanium concentrations of 36 out of 65 runoff events were measured.
View Article and Find Full Text PDFDue to its extensive use in industrial processes, large quantities of chromium compounds are discharged into the environment. Common approaches for the speciation of Cr employ the determination of Cr(VI) and total Cr. The focus of the present work was a separation of Cr(III) and Cr(VI) species, with a minimum of sample preparation, by keeping an eye on the more relevant and toxic Cr(VI).
View Article and Find Full Text PDF