Publications by authors named "Harald Frenz"

When humans use vision to gauge the travel distance of an extended forward movement, they often underestimate the movement's extent. This underestimation can be explained by leaky path integration, an integration of the movement to obtain distance. Distance underestimation occurs because this integration is imperfect and contains a leak that increases with distance traveled.

View Article and Find Full Text PDF

In immersive virtual environments (IVEs), users can control their virtual viewpoint by moving their tracked head and walking through the real world. Usually, movements in the real world are mapped one-to-one to virtual camera motions. With redirection techniques, the virtual camera is manipulated by applying gains to user motion so that the virtual world moves differently than the real world.

View Article and Find Full Text PDF

The optic flow generated in the eyes during self-motion provides an important control signal for direction and speed of self-motion, and can be used to track the distance that has been traveled. The use of vision for these behavioral tasks can be studied in isolation in virtual reality setups, in which self-motion is merely simulated, and in which the visual motion can be controlled independently of other sensory cues. In such experiments it was found that the estimation of the travel distance of a simulated movement shows characteristic errors, sometimes overestimating and sometimes underestimating the true travel distance.

View Article and Find Full Text PDF

Visual motion is used to control direction and speed of self-motion and time-to-contact with an obstacle. In earlier work, we found that human subjects can discriminate between the distances of different visually simulated self-motions in a virtual scene. Distance indication in terms of an exocentric interval adjustment task, however, revealed linear correlation between perceived and indicated distances but with a profound distance underestimation.

View Article and Find Full Text PDF

Optic flow fields provide rich information about the observer's self-motion. Besides estimation of the direction of self-motion human observers are also able to discriminate the travel distances of two self-motion simulations. Recent studies have shown that observers estimate the simulated ego velocity of the self-motion simulation and integrate it over time.

View Article and Find Full Text PDF

Effective navigation requires knowledge of the direction of motion and of the distance traveled. Humans can use visual motion cues from optic flow to estimate direction of self-motion. Can they also estimate travel distance from visual motion?Optic flow is ambiguous with regard to travel distance.

View Article and Find Full Text PDF