Climate change is leading to advanced snowmelt date in alpine regions. Consequently, alpine plant species and ecosystems experience substantial changes due to prolonged phenological seasons, while the responses, mechanisms and implications remain widely unclear. In this 3-year study, we investigated the effects of advancing snowmelt on the phenology of alpine snowbed species.
View Article and Find Full Text PDFThe complex meso- and microclimatic heterogeneity inherent to mountainous regions, driven by both topographic and biotic factors, and the lack of observations, poses significant challenges to using climate models to predict and understand impacts at various scales. We present here a six-year dataset (2017-2022) of continuous climatic measurements collected at five elevations from 983 m to 2705 m above sea level in the Val Mazia - Matschertal valley in the Italian Alps. The measurements include the air temperature, relative humidity, wind speed and direction, solar radiation, soil properties, precipitation, and snow height.
View Article and Find Full Text PDF