Publications by authors named "Hara-Kuge S"

Programmable protein scaffolds are invaluable in the development of genome engineering tools. The pentatricopeptide repeat (PPR) protein is an attractive platform for RNA manipulation because of its programmable RNA-binding selectivity, which is determined by the combination of amino acid species at three specific sites in the PPR motif. Translation is a key RNA regulatory step that determines the final gene expression level and is involved in various human diseases.

View Article and Find Full Text PDF

Sensory processing is regulated by the coordinated excitation and inhibition of neurons in neuronal circuits. The analysis of neuronal activities has greatly benefited from the recent development of genetically encoded Ca2+ indicators (GECIs). These molecules change their fluorescence intensities or colours in response to changing levels of Ca2+ and can, therefore, be used to sensitively monitor intracellular Ca2+ concentration, which enables the detection of neuronal excitation, including action potentials.

View Article and Find Full Text PDF

Forgetting memories is important for animals to properly respond to continuously changing environments. To elucidate the mechanisms of forgetting, we used one of the behavioral plasticities of hermaphrodite, olfactory adaptation to an attractive odorant, diacetyl, as a simple model of learning. In the TIR-1/JNK-1 pathway accelerates forgetting of olfactory adaptation by facilitating neural secretion from AWC sensory neurons.

View Article and Find Full Text PDF

Pexophagy can be experimentally induced in mammalian cells by removing the culture serum. Pex14p, a peroxisomal membrane protein essential for matrix protein import in docking of soluble receptor Pex5p, is involved in the mammalian autophagic degradation of peroxisomes and interacts with the lipidated form of LC3, termed LC3-II, an essential factor for autophagosome formation, under the starvation condition in CHO-K1 cells. However, molecular mechanisms underlying the Pex14p-LC3-II interaction remain largely unknown.

View Article and Find Full Text PDF

As a step toward understanding the homeostasis of peroxisomes in mammalian cells, we investigated a degradation system of peroxisomes in Chinese hamster ovary (CHO)-K1 cells in response to the nutrient-starvation. Peroxisomal proteins were degraded apparently in a preferential manner as compared to cytosolic proteins, when CHO-K1 cells were starved in Hank's solution and then re-cultured in a normal medium. We verified whether microtubule-associated protein I light chain 3 (LC3), an essential factor for autophagy, was involved in the degradation of peroxisomal proteins.

View Article and Find Full Text PDF

Vesicular integral protein of 36 kDa (VIP36) is an intracellular lectin recognizing high-mannose type glycans and is highly expressed in salivary glands, especially the parotid gland, which secretes alpha-amylase in large quantities. Here immunoelectron microscopy demonstrated that VIP36 was primarily localized to secretory vesicles in the glandula parotis of the rat, where alpha-amylase also resided. A secretory vesicle fraction, prepared by Percoll density gradient centrifugation, contained both VIP36 and alpha-amylase.

View Article and Find Full Text PDF

The vesicular integral membrane protein VIP36 belongs to the family of animal lectins and may act as a cargo receptor trafficking certain glycoproteins in the secretory pathway. Immunoelectron microscopy of GH3 cells provided evidence that endogenous VIP36 is localized mainly in 70-100-nm-diameter uncoated transport vesicles between the exit site on the ER and the neighboring cis-Golgi cisterna. The thyrotrophin-releasing hormone (TRH) stimulation and treatment with actin filament-perturbing agents, cytochalasin D or B or latrunculin-B, caused marked aggregation of the VIP36-positive vesicles and the appearance of a VIP36-positive clustering structure located near the cis-Golgi cisterna.

View Article and Find Full Text PDF

VIP36 (36-kD vesicular integral membrane protein), originally purified from Madin-Darby canine kidney (MDCK) epithelial cells, belongs to a family of animal lectins and may act as a cargo receptor. To understand its role in secretory processes, we performed morphological analysis of the rat parotid gland. Immunoelectron microscopy provided evidence that endogenous VIP36 is localized in the trans-Golgi network, on immature granules, and on mature secretory granules in acinar cells.

View Article and Find Full Text PDF

Many reports show that N-glycans of glycoproteins play important roles in vectorial transport in MDCK cells. To assess whether structural differences in N-glycans exist between secretory glycoproteins and membrane glycoproteins, we studied the N-glycan structures of the glycoproteins isolated from MDCK cells. Polarized MDCK cells were metabolically labeled with [3H]glucosamine, and (3)H-labeled N-glycans of four glycoprotein fractions, secretory glycoproteins in apical and basolateral media, and apical and basolateral membrane glycoproteins, were released by glycopeptidase F.

View Article and Find Full Text PDF

Interleukin-2 (IL-2) is a cytokine with important roles in the immune system. IL-2 initially binds a high mannose-type glycan and a specific peptide sequence of the IL-2 receptor alpha-subunit and sequentially forms a high affinity complex of IL-2.IL-2 receptor alpha-, beta-, and gamma-subunits.

View Article and Find Full Text PDF

We have identified a novel galactose 3-O-sulfotransferase, termed Gal3ST-4, by analysis of an expression sequence tag using the amino acid sequence of human cerebroside 3'-sulfotransferase (Gal3ST-1). The isolated cDNA contains a single open reading frame coding for a protein of 486 amino acids with a type II transmembrane topology. The amino acid sequence of Gal3ST-4 revealed 33%, 39%, and 30% identity to human Gal3ST-1, Gal beta 1-->3/4GlcNAc:-->3'-sulfotransferase (Gal3ST-2) and Gal beta 1-->4GlcNAc:-->3'-sulfotransferase (Gal3ST-3), respectively.

View Article and Find Full Text PDF

The vectorial intracellular transport of N-glycan-linked glycoproteins is indispensable for biological functions. In order to sort these glycoproteins to the correct destination, animal intracellular lectins play important roles as sorting receptors. The roles of such lectins in the biosynthetic pathway from the endoplasmic reticulum (ER) to the cell surface are addressed in this review.

View Article and Find Full Text PDF

The 36 kDa vesicular-integral membrane protein, VIP36, has been originally isolated from MDCK cells as a component of glycolipid-enriched detergent-insoluble complexes containing apical marker proteins, and its luminal domain shows homology to leguminous plant lectins and ERGIC-53. As the first step to identify the functional role of VIP36, the carbohydrate binding specificity of VIP36 was investigated using a fusion protein of glutathione- S -transferase and luminal domain of VIP36 (Vip36). It was found that VIP36 recognizes high-mannose type glycans containing alpha1-->2 Man residues and alpha-amino substituted asparagine.

View Article and Find Full Text PDF

6-Sulfo-sialyl Lewis X structure is attributable to recognition between lymphocytes and high endothelial venules. However, the biosynthetic pathway still remains unclear. We found that a beta-galactosyltransferase (betaGalT) in human colorectal mucosa preferentially acts on GlcNAc-6-O-sulfate (6S-GN).

View Article and Find Full Text PDF

Structures of N-linked sugar chains are species and tissue specific and change in the course of tumorigenesis. Sialyl linkages of human placental glycoproteins are exclusively Neu5Ac alpha2-->3Gal, whereas Fuc alpha1-->2Gal and Neu5Ac alpha2-->6Gal residues are expressed in human chorionic gonadotropin and alkaline phosphatase, which are produced in human choriocarcinoma JEG-3 and BeWo cells. In the present study, to elucidate the enzymological and molecular biological basis of the structural changes that occur in the course of tumorigenesis, alpha1-->2 fucosyltransferase, alpha2-->3 and alpha2-->6 sialyltransferase activities, and the expression levels of the corresponding mRNAs were measured.

View Article and Find Full Text PDF

We found that 35S-labeled recombinant human interleukin-1beta (rhIL-1beta) binds phosphatidylinositol-specific phospholipase C-treated human placental alkaline phosphatase, phosphatidylinositol-specific phospholipase C-treated trypanosome surface variant glycoproteins, and urinary uromodulin immobilized on plates or immobilized on CNBr-activated Sepharose 4B. The interaction between rhIL-1beta and these glycoproteins was lectin-like, since it was inhibited in the presence of specific saccharides, i.e.

View Article and Find Full Text PDF

Carbohydrate-deficient glycoprotein (CDG) syndrome type I is a congenital disorder that involves the underglycosylation of N-glycosylated glycoproteins (Yamashita, K., Ideo, H., Ohkura, T.

View Article and Find Full Text PDF

We have previously isolated a lipopolysaccharide (LPS)-resistant mutant (named LR-9) of a cultured macrophage-like cell line, J774.1. This mutant had defective LPS binding [Hara-Kuge, S.

View Article and Find Full Text PDF

The cDNA encoding epsilon-COP, the 36-kD subunit of coatomer, was cloned from a bovine liver cDNA library and sequenced. Immunoblotting with an anti-epsilon-COP antibody showed that epsilon-COP exists in COP-coated vesicles as well as in the cytosolic coatomer. Using the cloned cDNA, recombinant His6- tagged epsilon-COP was overexpressed in cultured Chinese hamster ovary (CHO) cells, from which metabolically radiolabeled coatomer was purified by taking advantage of the His6 tag.

View Article and Find Full Text PDF

cDNA encoding the 20-kD subunit of coatomer, zeta-COP, predicts a protein of 177-amino acid residues, similar in sequence to AP17 and AP19, subunits of the clathrin adaptor complexes. Polyclonal antibody directed to zeta-COP blocks the binding of coatomer to Golgi membranes and prevents the assembly of COP-coated vesicles on Golgi cisternae. Unlike other coatomer subunits (beta-, beta'-, gamma-, and epsilon-COP), zeta-COP exists in both coatomer bound and free pools.

View Article and Find Full Text PDF

Lipopolysaccharide (LPS)-resistant mutants which did not respond to LPS were isolated from a macrophage-like mouse cell line, J774.1. Unlike the parental J774.

View Article and Find Full Text PDF