Public safety is a critical concern, typically addressed through security checks at entrances of public places, involving trained officers or X-ray scanning machines to detect prohibited items. However, many places like hospitals, schools, and event centres lack such resources, risking security breaches. Even with X-ray scanners or manual checks, gaps can be exploited by individuals with malicious intent, posing significant security risks.
View Article and Find Full Text PDFInterpretable machine learning models are instrumental in disease diagnosis and clinical decision-making, shedding light on relevant features. Notably, Boruta, SHAP (SHapley Additive exPlanations), and BorutaShap were employed for feature selection, each contributing to the identification of crucial features. These selected features were then utilized to train six machine learning algorithms, including LR, SVM, ETC, AdaBoost, RF, and LR, using diverse medical datasets obtained from public sources after rigorous preprocessing.
View Article and Find Full Text PDFBreast cancer is one of the leading causes of death among women worldwide. Histopathological images have proven to be a reliable way to find out if someone has breast cancer over time, however, it could be time consuming and require much resources when observed physically. In order to lessen the burden on the pathologists and save lives, there is need for an automated system to effectively analysis and predict the disease diagnostic.
View Article and Find Full Text PDFAccording to research, classifiers and detectors are less accurate when images are blurry, have low contrast, or have other flaws which raise questions about the machine learning model's ability to recognize items effectively. The chest X-ray image has proven to be the preferred image modality for medical imaging as it contains more information about a patient. Its interpretation is quite difficult, nevertheless.
View Article and Find Full Text PDFThe COVID-19 pandemic has had a significant impact on many lives and the economies of many countries since late December 2019. Early detection with high accuracy is essential to help break the chain of transmission. Several radiological methodologies, such as CT scan and chest X-ray, have been employed in diagnosing and monitoring COVID-19 disease.
View Article and Find Full Text PDFToday, Magnetic Resonance Imaging (MRI) is a prominent technique used in medicine, produces a significant and varied range of tissue contrasts in each imaging modalities, and is frequently employed by medical professionals to identify brain malignancies. With brain tumor being a very deadly disease, early detection will help increase the likelihood that the patient will receive the appropriate medical care leading to either a full elimination of the tumor or the prolongation of the patient's life. However, manually examining the enormous volume of magnetic resonance imaging (MRI) images and identifying a brain tumor or cancer is extremely time-consuming and requires the expertise of a trained medical expert or brain doctor to manually detect and diagnose brain cancer using multiple Magnetic Resonance images (MRI) with various modalities.
View Article and Find Full Text PDFInvasive carcinoma of no special type (IC-NST) is known to be one of the most prevalent kinds of breast cancer, hence the growing research interest in studying automated systems that can detect the presence of breast tumors and appropriately classify them into subtypes. Machine learning (ML) and, more specifically, deep learning (DL) techniques have been used to approach this problem. However, such techniques usually require massive amounts of data to obtain competitive results.
View Article and Find Full Text PDFIntroduction And Background: Despite fast developments in the medical field, histological diagnosis is still regarded as the benchmark in cancer diagnosis. However, the input image feature extraction that is used to determine the severity of cancer at various magnifications is harrowing since manual procedures are biased, time consuming, labor intensive, and error-prone. Current state-of-the-art deep learning approaches for breast histopathology image classification take features from entire images (generic features).
View Article and Find Full Text PDFTimely discovery of COVID-19 could aid in formulating a suitable treatment plan for disease mitigation and containment decisions. The widely used COVID-19 test necessitates a regular method and has a low sensitivity value. Computed tomography and chest X-ray are also other methods utilized by numerous studies for detecting COVID-19.
View Article and Find Full Text PDFChest X-ray (CXR) is becoming a useful method in the evaluation of coronavirus disease 19 (COVID-19). Despite the global spread of COVID-19, utilizing a computer-aided diagnosis approach for COVID-19 classification based on CXR images could significantly reduce the clinician burden. There is no doubt that low resolution, noise and irrelevant annotations in chest X-ray images are a major constraint to the performance of AI-based COVID-19 diagnosis.
View Article and Find Full Text PDFCoronavirus disease has rapidly spread globally since early January of 2020. With millions of deaths, it is essential for an automated system to be utilized to aid in the clinical diagnosis and reduce time consumption for image analysis. This article presents a generative adversarial network (GAN)-based deep learning application for precisely regaining high-resolution (HR) CXR images from low-resolution (LR) CXR correspondents for COVID-19 identification.
View Article and Find Full Text PDFHealthcare (Basel)
February 2022
Since it was first reported, coronavirus disease 2019, also known as COVID-19, has spread expeditiously around the globe. COVID-19 must be diagnosed as soon as possible in order to control the disease and provide proper care to patients. The chest X-ray (CXR) has been identified as a useful diagnostic tool, but the disease outbreak has put a lot of pressure on radiologists to read the scans, which could give rise to fatigue-related misdiagnosis.
View Article and Find Full Text PDFComputed Tomography has become a vital screening method for the detection of coronavirus 2019 (COVID-19). With the high mortality rate and overload for domain experts, radiologists, and clinicians, there is a need for the application of a computerized diagnostic technique. To this effect, we have taken into consideration improving the performance of COVID-19 identification by tackling the issue of low quality and resolution of computed tomography images by introducing our method.
View Article and Find Full Text PDFIt is a well-known fact that diabetic retinopathy (DR) is one of the most common causes of visual impairment between the ages of 25 and 74 around the globe. Diabetes is caused by persistently high blood glucose levels, which leads to blood vessel aggravations and vision loss. Early diagnosis can minimise the risk of proliferated diabetic retinopathy, which is the advanced level of this disease, and having higher risk of severe impairment.
View Article and Find Full Text PDFPneumonia is a prevalent severe respiratory infection that affects the distal and alveoli airways. Across the globe, it is a serious public health issue that has caused high mortality rate of children below five years old and the aged citizens who must have had previous chronic-related ailment. Pneumonia can be caused by a wide range of microorganisms, including virus, fungus, bacteria, which varies greatly across the globe.
View Article and Find Full Text PDF