Publications by authors named "Hapala I"

Lipid droplets (LD) are highly dynamic organelles specialized for the regulation of energy storage and cellular homeostasis. LD consist of a neutral lipid core surrounded by a phospholipid monolayer membrane with embedded proteins, most of which are involved in lipid homeostasis. In this study, we focused on one of the major LD proteins, sterol C24-methyltransferase, encoded by ERG6.

View Article and Find Full Text PDF

Storage lipids, triacylglycerols (TAG), and steryl esters (SE), are predominant constituents of lipid droplets (LD) in fungi. In several yeast species, metabolism of TAG and SE is linked to various cellular processes, including cell division, sporulation, apoptosis, response to stress, and lipotoxicity. In addition, TAG are an important source for the generation of value-added lipids for industrial and biomedical applications.

View Article and Find Full Text PDF

Sterol uptake in the yeast Saccharomyces cerevisiae is mediated by two plasma membrane ATP-binding cassette transporters, Aus1 and Pdr11. Their expression is regulated by oxygen and is triggered by anaerobic growth conditions. Under these conditions, internal ergosterol synthesis is arrested and utilization of exogenous sterol is vital for yeast cells.

View Article and Find Full Text PDF

Squalene is a naturally occurring triterpene with wide industrial applications. Due to limited natural resources, production of this valuable lipid in yeast is of high commercial relevance. Typically low levels of squalene in yeast can be significantly increased by specific cultivation conditions or genetic modifications.

View Article and Find Full Text PDF

The complete mitochondrial DNA (mtDNA) sequence from Kazachstania sinensis was analysed and compared to mtDNA from related yeasts. It contained the same set of genes; however, it only contained 23 tRNAs, as the trnR2 gene was absent. Most of the 12 introns within cox1, cob and rnl genes were inserted in the same sites as in other yeasts; however, two introns in rnl were in unusual positions.

View Article and Find Full Text PDF

Squalene is a precursor in the eukaryotic sterol biosynthesis. It is a valuable compound with several human health-related applications. Since the traditional natural resources of squalene are limited, alternatives for the production of squalene on industrial scale have been intensively explored during past years.

View Article and Find Full Text PDF

The toxic effect of overloaded lipids on cell physiology and viability was described in various organisms. In this study we focused on the potential lipotoxicity of squalene, a linear triterpene synthesized in eukaryotic cells as an intermediate in sterol biosynthesis. Squalene toxicity was studied in the yeast Saccharomyces cerevisiae, a model unicellular eukaryote established in lipotoxicity studies.

View Article and Find Full Text PDF

The role of cis-vaccenic acid (18:1n-7) in the reduction of unsaturated fatty acids toxicity was investigated in baker's yeast Saccharomyces cerevisiae. The quadruple mutant (QM, dga1Δ lro1Δ are1Δ are2Δ) deficient in enzymes responsible for triacylglycerol and steryl ester synthesis has been previously shown to be highly sensitive to exogenous unsaturated fatty acids. We have found that cis-vaccenic acid accumulated during cultivation in the QM cells but not in the corresponding wild type strain.

View Article and Find Full Text PDF

Unlabelled: Utilization of yeast as squalene source for commercial use is limited by relatively high production costs. The ability of Kluyveromyces lactis to grow on cheap lactose-containing diary industry wastes could improve the economy of the production process. We therefore tested the potential of this yeast for squalene production.

View Article and Find Full Text PDF

Squalene is a valuable natural substance with several biotechnological applications. In the yeast Saccharomyces cerevisiae, it is produced in the isoprenoid pathway as the first precursor dedicated to ergosterol biosynthesis. The aim of this study was to explore the potential of squalene epoxidase encoded by the ERG1 gene as the target for manipulating squalene levels in yeast.

View Article and Find Full Text PDF

Pdr16p belongs to the family of phosphatidylinositol transfer proteins in yeast. The absence of Pdr16p results in enhanced susceptibility to azole antifungals in Saccharomyces cerevisiae. In the major fungal human pathogen Candida albicans, CaPDR16 is a contributing factor to clinical azole resistance.

View Article and Find Full Text PDF

Unlabelled: Glucose and cell swelling induce insulin secretion by alternative signaling pathways. Swelling-induced secretion is in most systems independent of calcium and various mediators of glucose stimulation. Comparison of two insulinoma tumor cell lines revealed surprising difference; INS-1E cells in contrast to INS-1 cells and isolated rat pancreatic islets do not respond to hypotonicity in the presence of calcium.

View Article and Find Full Text PDF

LDs (lipid droplets) have long been considered as inert particles used by the cells to store fatty acids and sterols as esterified non-toxic lipid species (i.e. triacylglycerols and steryl esters).

View Article and Find Full Text PDF
Article Synopsis
  • The process of external sterol uptake in yeast Saccharomyces cerevisiae occurs under specific conditions, such as low oxygen or heme deficiency, and involves multiple steps including crossing the cell wall and integrating into membranes.
  • Researchers used a fluorescent sterol analog, dehydroergosterol (DHE), to study the uptake process through various methods, revealing that transporting sterols into the plasma membrane requires the assistance of specific ABC pumps, Aus1p and Pdr11p.
  • The study found that the yeast cell wall plays an active role in the binding and uptake of sterols, as evidenced by changes in DHE visualization and quantification in different yeast cell mutants.
View Article and Find Full Text PDF

The role of archaeal membrane and its lipid constituents was investigated in bioenergetic functions of Methanothermobacter thermautotrophicus. The effects were determined of the 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor, pravastatin, on lipid composition, and its impact on some bioenergetic functions of treated cells. Pravastatin remarkably inhibited the growth of M.

View Article and Find Full Text PDF

Background: CTBT (7-chlorotetrazolo [5,1-c]benzo[1,2,4]triazine) increases efficacy of commonly used antifungal agents by an unknown mechanism. It increases the susceptibility of Saccharomyces cerevisiae, Candida albicans and Candida glabrata cells to cycloheximide, 5-fluorocytosine and azole antimycotic drugs. Here we elucidate CTBT mode of action with a combination of systematic genetic and transcriptome analysis.

View Article and Find Full Text PDF

Squalene belongs to the group of isoprenoids and is a precursor for the synthesis of sterols, steroids, and ubiquinones. In the yeast Saccharomyces cerevisiae, the amount of squalene can be increased by variation of growth conditions or by genetic manipulation. In this report, we show that a hem1Delta mutant accumulated a large amount of squalene, which was stored almost exclusively in cytoplasmic lipid particles/droplets.

View Article and Find Full Text PDF

A spontaneous mutant of Methanothermobacter thermautotrophicus resistant to tributyltin chloride (TBT) was isolated. TBT, the inhibitor of the A(0) domain of A(1)A(0)-ATP synthase, inhibits methanogenesis in the wild-type cells; however, the TBT-resistant mutant exhibited methanogenesis even in the presence of 800 microM TBT. ATP synthesis driven by methanogenic electron transport was markedly diminished in the mutant strain.

View Article and Find Full Text PDF

Rats subjected to various accelerations (+G) exhibited increased levels of plasma epinephrine (EPI), norepinephrine (NE), and corticosterone. However, the collection of blood was performed after a centrifugation finished, and therefore the levels could be affected by the process of deceleration. The aim of this study was to evaluate plasma EPI, NE, and corticosterone levels in blood collected directly during centrifugation after reaching different G (2-6), using newly developed remote-controlled equipment.

View Article and Find Full Text PDF

A genomic comparison of Yarrowia lipolytica and Saccharomyces cerevisiae indicates that the metabolism of Y. lipolytica is oriented toward the glycerol pathway. To redirect carbon flux toward lipid synthesis, the GUT2 gene, which codes for the glycerol-3-phosphate dehydrogenase isomer, was deleted in Y.

View Article and Find Full Text PDF

Multidrug resistance in yeast results from overexpression of genes encoding drug efflux transporters owing to gain-of-function mutations in transcription factors regulating their expression. We have screened a library of synthetic compounds for modulators of drug resistance using the multidrug-resistant Saccharomyces cerevisiae pdr3-9 mutant strain. One of the compounds, 7-chlorotetrazolo[5,1-c]benzo[1,2,4]triazine (CTBT), displayed weak antifungal activity and strongly inhibited the growth of yeast cells in combination with subinhibitory concentrations of other antifungals with a different mode of action.

View Article and Find Full Text PDF

Squalene epoxidase (SE) is the target of terbinafine, which specifically inhibits the fungal enzyme in a noncompetitive manner. On the basis of functional homologies to p-hydroxybenzoate hydroxylase (PHBH) from Pseudomonas fluorescens, the Erg1 protein contains two flavin adenine dinucleotide (FAD) domains and one nucleotide binding (NB) site. By in vitro mutagenesis of the ERG1 gene, which codes for the Saccharomyces cerevisiae SE, we isolated erg1 alleles that conferred increased terbinafine sensitivity or that showed a lethal phenotype when they were expressed in erg1-knockout strain KLN1.

View Article and Find Full Text PDF

Polyene macrolides nystatin and amphotericin B are widely used in the treatment of fungal infections. In order to characterize factors affecting polyene activity, we have isolated Saccharomyces cerevisiae mutants showing selective resistance to nystatin and amphotericin B. Characterization of two of these mutants (nystatin-resistant mutant X1/16 and amphotericin B-resistant mutant X3/33) is presented.

View Article and Find Full Text PDF