Publications by authors named "Haoyue Tang"

Background: In-stent restenosis is characterized by a significant reduction in lumen diameter within the stented segment, primarily attributed to excessive proliferation of vascular smooth muscle cells (VSMCs) and neointimal hyperplasia. PFN1 (profilin-1), an actin-sequestering protein extensively studied in amyotrophic lateral sclerosis, remains less explored in neointimal hyperplasia.

Methods: Utilizing single-cell RNA sequencing alongside data from in-stent restenosis patients and various experimental in-stent restenosis models (swine, rats, and mice), we investigated the role of PFN1 in promoting VSMC phenotype switching and neointimal hyperplasia.

View Article and Find Full Text PDF

The structure-function relationship of functionalized microcrystalline cellulose (MCC) composites as adsorbents remains unclear. Herein, the orange peel-derived MCC (i.e.

View Article and Find Full Text PDF

Vascular smooth muscle cells (VSMCs), the major cell type in the arterial vessel wall, have a contractile phenotype that maintains the normal vessel structure and function under physiological conditions. In response to stress or vascular injury, contractile VSMCs can switch to a less differentiated state (synthetic phenotype) to acquire the proliferative, migratory, and synthetic capabilities for tissue reparation. Imbalances in VSMCs phenotypic switching can result in a variety of cardiovascular diseases, including atherosclerosis, in-stent restenosis, aortic aneurysms, and vascular calcification.

View Article and Find Full Text PDF

The local heterogeneity in the distribution of atherosclerotic lesions is caused by local flow patterns. The integrin family plays crucial regulatory roles in diverse biological processes, but knowledge of integrin 4 (ITGB4) in shear stress-induced atherosclerosis is limited. This study clarified that low shear stress (LSS) regulates the generation of ITGB4 in endothelial cells with atheroprone phenotype to identify ITGB4's role in atherosclerosis.

View Article and Find Full Text PDF

Clean air policies have achieved remarkable air quality improvement in China for the last decade. However, as more importance was attached to climate issues and further improvement of air quality, policies with greenhouse gas (GHG) reduction potential were supposed to play a significant role. Here, we designed a conventional legislation pathway scenario (CLP) and an enhanced greenhouse gas reduction scenario (EGR), to estimate the co-effects of policies effective in GHG reduction on air pollutant control and air quality improvement in the Yangtze River Delta (YRD) region from 2014 to 2020, adopting a measure-specific evaluation method and an integrated WRF-CAMx model simulation.

View Article and Find Full Text PDF

In spite of the state-of-the-art performances of machine learning in the PM estimation, the high-value PM underestimation and non-random aerosol optical depth (AOD) missing are still huge obstacles. By incorporating wavelet decomposition (WD) into the extreme gradient boosting (XGBoost), a hybrid XGBoost-WD model was established to obtain the full-coverage PM estimation at 3-km spatial resolution in the Yangtze River Delta Urban Agglomeration (YRDUA). In this study, 3-km-resolution meteorological fields simulated by WRF along with AOD derived from Moderate Resolution Imaging Spectroradiometer (MODIS) were served as explanatory variables.

View Article and Find Full Text PDF

In this paper, we consider a scenario where the base station (BS) collects time-sensitive data from multiple sensors through time-varying and error-prone channels. We characterize the data freshness at the terminal end through a class of monotone increasing functions related to Age of information (AoI). Our goal is to design an optimal policy to minimize the average age penalty of all sensors in infinite horizon under bandwidth and power constraint.

View Article and Find Full Text PDF

Follicle stimulating hormone (FSH) plays a critical role in female reproductive development and homeostasis. The blood/serum concentration of FSH is an important marker for reporting multiple endocrinal functions. The standardized method for mouse FSH (mFSH) quantification based on radioimmunoassay (RIA) suffers from long assay time (∼2 days), relatively low sensitivity, larger sample volume (60 μL), and small dynamic range (2-60 ng/mL); thus, it is insufficient for monitoring fast developing events with relatively small mFSH fluctuations (e.

View Article and Find Full Text PDF