Publications by authors named "Haoyu Hu"

Article Synopsis
  • Flat bands can lead to unique physical properties like superconductivity and many-body effects, and their behavior depends on the quantum metric, which helps distinguish between interesting correlated physics and less significant dangling bonds.
  • Geometric structures, such as the kagome lattice, show promise for creating correlated flat bands, though real materials often add complexity, making quantum geometry crucial for understanding band properties.
  • Researchers used a soft-chemical process to oxidize Ni-kagome material CsNiS, significantly reducing its resistance, yet it remained insulating without any phase transition, hinting at a mysterious correlated insulating state.
View Article and Find Full Text PDF

Background: A bioprosthetic valve is recommended for women of childbearing age who require cardiac valve replacement in order to minimize the risk of blood clot formation. However, it should be noted that compared to mechanical valves, bioprosthetic valves have a shorter lifespan and a higher likelihood of requiring reoperation during follow-up. To assess the long-term postoperative results, including the incidence of structural valve deterioration (SVD) and other clinical outcomes, in female patients aged 50 years and younger who underwent BalMedic bovine pericardial bioprosthetic valve replacement, a multicenter retrospective study was implemented in China.

View Article and Find Full Text PDF

Flat electronic bands are expected to show proportionally enhanced electron correlations, which may generate a plethora of novel quantum phases and unusual low-energy excitations. They are increasingly being pursued in d-electron-based systems with crystalline lattices that feature destructive electronic interference, where they are often topological. Such flat bands, though, are generically located far away from the Fermi energy, which limits their capacity to partake in the low-energy physics.

View Article and Find Full Text PDF

Background: Precision surgery for liver tumors favors laparoscopic anatomical liver resection (LALR), involving the removal of specific liver segments or subsegments. Indocyanine green (ICG)-negative staining is a commonly used method for defining resection boundaries but may be prone to failure. The challenge arises when ICG staining fails, as it cannot be repeated during surgery.

View Article and Find Full Text PDF

Background: Laparoscopic left hemihepatectomy (LLH) has been shown to be an effective and safe method for treating hepatolithiasis primarily affecting the left hemiliver. However, this procedure still presents challenges. Due to pathological changes in intrahepatic duct stones, safely dissecting the hilar vessels and determining precise resection boundaries remains difficult, even with fluorescent imaging.

View Article and Find Full Text PDF

Self-oscillating systems possess the ability to convert ambient energy directly into mechanical work, and new types of self-oscillating systems are worth designing for practical applications in energy harvesters, engines and actuators. Taking inspiration from the four-stroke engine. A concept for a self-rotating engine is presented on the basis of photothermally responsive materials, consisting of a liquid crystal elastomer (LCE) fiber, a hinge and a turnplate, which can self-rotate under steady illumination.

View Article and Find Full Text PDF

Self-oscillating systems can directly convert ambient energy to mechanical work, and new type self-oscillating systems are worth designing for applications in energy harvesters, engines, and actuators. Taking inspiration from the hand drill, we have developed a novel self-rotating drill system, which is consist of a turnplate and a liquid crystal elastomer (LCE) fiber under steady illumination. To investigate the self-rotating behaviors of the LCE drill, we have proposed a nonlinear theoretical model of the LCE drill under steady illumination based on the well-established dynamic LCE model.

View Article and Find Full Text PDF

Gliomas are malignant tumours of the human nervous system with different World Health Organization (WHO) classifications, glioblastoma (GBM) with higher grade and are more malignant than lower-grade glioma (LGG). To dissect how the DNA methylation heterogeneity in gliomas is influenced by the complex cellular composition of the tumour immune microenvironment, we first compared the DNA methylation profiles of purified human immune cells and bulk glioma tissue, stratifying three tumour immune microenvironmental subtypes for GBM and LGG samples from The Cancer Genome Atlas (TCGA). We found that more intermediate methylation sites were enriched in glioma tumour tissues, and used the Proportion of sites with Intermediate Methylation (PIM) to compare intertumoral DNA methylation heterogeneity.

View Article and Find Full Text PDF

Background: Three-dimensional reconstruction visualization technology (3D-RVT) is an important tool in the preoperative assessment of patients undergoing liver resection. However, it is not clear whether this technique can improve short-term and long-term outcomes in patients with hepatocellular carcinoma (HCC) compared with two-dimensional (2D) imaging.

Method: A total of 3402 patients from five centers were consecutively enrolled from January 2016 to December 2020, and grouped based on the use of 3D-RVT or 2D imaging for preoperative assessment.

View Article and Find Full Text PDF

Photoacoustic tomography (PAT) and magnetic resonance imaging (MRI) are two advanced imaging techniques widely used in pre-clinical research. PAT has high optical contrast and deep imaging range but poor soft tissue contrast, whereas MRI provides excellent soft tissue information but poor temporal resolution. Despite recent advances in medical image fusion with pre-aligned multimodal data, PAT-MRI image fusion remains challenging due to misaligned images and spatial distortion.

View Article and Find Full Text PDF

Cylindrical organs, e.g., blood vessels, airways, and intestines, are ubiquitous structures in biomedical optical imaging analysis.

View Article and Find Full Text PDF

Background: The internal anatomy of the liver is extremely complex. Laparoscopic anatomical segmentectomy requires reference to the position and alignment of intrahepatic vascular. However, the surface of the liver lacks anatomical landmarks and the liver segment boundaries cannot be identified with the naked eye.

View Article and Find Full Text PDF
Article Synopsis
  • * The study introduces a biomimetic oxygen delivery system called BLICP@O, which uses hybrid tumor cell membranes and thermosensitive liposomes for targeted oxygen delivery while employing near-infrared-II (NIR-II) imaging for real-time monitoring of oxygen levels.
  • * Results show that this imaging-guided approach, which combines photothermal and photodynamic effects through dual-wavelength irradiation, significantly improves PDT efficacy by alleviating hypoxia, making it a promising method for enhancing cancer treatment strategies. *
View Article and Find Full Text PDF

Achieving and controlling the desired movements of active machines is generally accomplished through precise control of artificial muscles in a distributed and serialized manner, which is a significant challenge. The emerging motion control strategy based on self-oscillation in active machines has unique advantages, including directly harvesting energy from constant ambient light, and it has no need for complex controllers. Inspired by the roller, we have innovatively developed a self-rolling roller that consists of a roller and a liquid crystal elastomer (LCE) fiber.

View Article and Find Full Text PDF

We use the topological heavy fermion (THF) model and its Kondo lattice (KL) formulation to study the possibility of a symmetric Kondo (SK) state in twisted bilayer graphene. Via a large-N approximation, we find a SK state in the KL model at fillings ν=0,±1,±2 where a KL model can be constructed. In the SK state, all symmetries are preserved and the local moments are Kondo screened by the conduction electrons.

View Article and Find Full Text PDF

Background: Laparoscopic anatomical Segment 8 (S8) resection is a highly challenging hepatectomy. Augmented reality navigation (ARN), which could be combined with indocyanine green (ICG) fluorescence imaging, has been applied in various complex liver resections and may also be applied in laparoscopic anatomical S8 resection. However, no study has explored how to apply ARN plus ICG fluorescence imaging (ARN-FI) in laparoscopic anatomical S8 resection, or explored its accuracy.

View Article and Find Full Text PDF

We apply a generalized Schrieffer-Wolff transformation to the extended Anderson-like topological heavy fermion (THF) model for the magic-angle (θ=1.05°) twisted bilayer graphene (MATBLG) [Phys. Rev.

View Article and Find Full Text PDF

Flat bands amplify correlation effects and are of extensive current interest. They provide a platform to explore both topology in correlated settings and correlation physics enriched by topology. Recent experiments in correlated kagome metals have found evidence for strange-metal behavior.

View Article and Find Full Text PDF
Article Synopsis
  • The many-banded krait's venom is connected to important animal neurotoxins, but its detailed genetic information hasn't been clear until now.
  • Scientists created a high-quality genome of the krait, discovering how its venom genes evolved and diversified over time.
  • The study helps us understand how snake venom works better, which could help in making antivenoms and developing new medicines.
View Article and Find Full Text PDF

Background: Methods based on the combination of transformer and convolutional neural networks (CNNs) have achieved impressive results in the field of medical image segmentation. However, most of the recently proposed combination segmentation approaches simply treat transformers as auxiliary modules which help to extract long-range information and encode global context into convolutional representations, and there is a lack of investigation on how to optimally combine self-attention with convolution.

Methods: We designed a novel transformer block (MRFormer) that combines a multi-head self-attention layer and a residual depthwise convolutional block as the basic unit to deeply integrate both long-range and local spatial information.

View Article and Find Full Text PDF

Background: Laparoscopic hepatectomy for centrally located hepatocellular carcinoma is challenging to perform. Augmented reality navigation (ARN) and fluorescence imaging are currently safe and reproducible techniques for hepatectomy, but the efficacy results for centrally located hepatocellular carcinoma have not been reported. This study aimed to evaluate the efficacy of an ARN system combined with fluorescence imaging (ARN-FI) in laparoscopic hepatectomy for centrally located hepatocellular carcinoma.

View Article and Find Full Text PDF

Clean energy conversion is a core approach and development trend to tackle climate change, while the severe drawbacks such as supply deficiency and cost increase restrict regional sustainable development. This paper employs a natural experiment of coal-to-gas conversion of the Chinese government to study the effect of such policy on regional sustainable development, as well as the underlying mechanism. Based on a city-level dataset from 2006 to 2019, this paper measure green total factor productivity (GTFP) using data envelopment analysis (DEA) combined with the Malmquist‒Luenberger productivity index.

View Article and Find Full Text PDF

Inter-city mobility is one of the most important issues in the UN Sustainable Development Goals, as it is essential to access the regional labour market, goods and services, and to constrain the spread of infectious diseases. Although the gravity model has been proved to be an effective model to describe mobility among settlements, knowledge is still insufficient in regions where dozens of megacities interact closely and over 100 million people reside. In addition, the existing knowledge is limited to overall population mobility, while the difference in inter-city travel with different purposes is unexplored on such a large geographic scale.

View Article and Find Full Text PDF