Publications by authors named "Haoyu Dai"

Common filter membranes for emulsion separation often require time-intensive preparation and extensive use of chemicals, necessitating a fast-processing and eco-friendly alternative. This study introduces a 2-layer stacked nylon mesh treated with surface diffuse atmospheric plasma (SDAP) for rapid and efficient emulsion separation. Commercial nylon mesh exhibited durable super-wetting properties after just 30 s of SDAP treatment, which was sufficient for effective emulsion separation.

View Article and Find Full Text PDF

Numerous organisms exploit asymmetrical capillary forces generated by unique fiber or asymmetrical tapered structures to rapidly eliminate undesired liquid for survival in moist or rainy habitats. Human eyelashes, the primary protector of eyes, use a yet-to-be-fully-understood mechanism to efficiently transfer incoming liquid for vision safeguarding. Here, we elucidate that human eyelashes featuring a hydrophobic curved flexible fiber array with surface micro-ratchet and macro-curvature approximating the is adept at directionally and rapidly expelling incoming liquid to maintain clear vision.

View Article and Find Full Text PDF

The ultrafast charge/discharge rate and high power density (P) endow lead-free dielectric energy storage ceramics (LDESCs) with enormous application potential in electric vehicles. However, their low energy storage density and single energy storage performance (ESP) limit their further development and applicability in rugged environments. Here, through the design of vacancy defects and phase structure regulation, Pb-free (BiNa)TiO-based ceramics with an optimal composition can achieve a large maximum polarization (>44 µC cm) under a moderate electric field (410 kV cm), resulting in an extremely high recoverable energy storage density (≈6.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) has significant advantages in the treatment of malignant lung tumors. The research on the mechanism of PDT mediated by hematoporphyrin derivatives (HPD) and its cytotoxic effects on lung cancer cells has primarily focused on lung adenocarcinoma cells. However, the impact of HPD-PDT on lung squamous cell carcinoma has not been thoroughly studied.

View Article and Find Full Text PDF

As a critical concept in physical chemistry, superwettability is widely concerned in both fundamental science and practical engineering in past few decades. Despite this, investigation on high temperature superwettability is still a void, which is significant both in scientific and industrial fields. Herein, a ceramic with specific high temperature non-wetting property, SiNO is proposed.

View Article and Find Full Text PDF

Poor dyeing performance has been a major defect of polylactic acid (PLA) fibers, which is caused by the lack of active chemical groups in PLA, and hinders the widespread use of this biodegradable material. Most of the existing chemical modification methods are not environmentally friendly and produce effluents. Herein, we report a green, efficient and continuous method to process PLA fibers surface diffuse atmospheric plasma for the improvement of its hydrophilicity and dyeing performance.

View Article and Find Full Text PDF

Self-propulsion of droplets in a controlled and long path at a high-speed is crucial for organic synthesis, pathological diagnosis and programable lab-on-a-chip. To date, extensive efforts have been made to achieve droplet self-propulsion by asymmetric gradient, yet, existing structural, chemical, or charge density gradients can only last for a while (<50 mm). Here, this work designs a symmetrical waved alternating potential (WAP) on a superhydrophobic surface to charge or discharge the droplets during the transport process.

View Article and Find Full Text PDF

All-liquid molding can be used to transform a liquid into free-form solid constructs, while maintaining internal fluidity. Traditional biological scaffolds, such as cured pre-gels, are normally processed in solid state, sacrificing flowability and permeability. However, it is essential to maintain the fluidity of the scaffold to truly mimic the complexity and heterogeneity of natural human tissues.

View Article and Find Full Text PDF

Holothurian glycosaminoglycan (hGAG) is extracted from the body wall of the sea cucumber, and previous studies have shown many unique bioactivities of hGAG, including antitumor, anti-angiogenesis, anti coagulation, anti thrombosis, anti-inflammation, antidiabetic effect, antivirus, and immune regulation. The effects of 3W and 5W molecular weights hGAG with hematoporphyrin derivative-photodynamic therapy (HPD-PDT) on lung cancer were investigated. Human lung adenocarcinoma A549 cells were divided into 6 groups: control group, 3W molecular weight hGAG group, 5W molecular weight hGAG group, HPD-PDT group, 3W molecular weight hGAG + HPD-PDT group, and 5W molecular weight hGAG + HPD-PDT group.

View Article and Find Full Text PDF

Oily wastewater discharge causes not only the pollution of environment but also the waste of resources. Existing technologies for wastewater remediation, such as membrane and particle methods, are variable and effective, but are difficult for achieving continuous and rapid oil-water separation. Here, with the synergy of turbo stirring, a strategy for emulsion separation is demonstrated based on the bio-inspired cone array barrel.

View Article and Find Full Text PDF

Unwanted protein adsorption deteriorates fouling processes and reduces analytical device performance. Wettability plays an important role in protein adsorption by affecting interactions between proteins and surfaces. However, the principles of protein adsorption are not completely understood, and surface coatings that exhibit resistance to protein adsorption and long-term stability still need to be developed.

View Article and Find Full Text PDF

Natural creatures use their surface structures to control directional liquid dynamics for survival. Learning from nature, artificial superwetting materials have triggered technological revolutions in many disciplines. To improve controllability, researchers have attempted to use external fields, such as thermal, light, magnetic, and electric fields, to assist or achieve controllable liquid dynamics.

View Article and Find Full Text PDF

The rapid removal of rain droplets at the leaf apex is critical for leaves to avoid damage under rainfall conditions, but the general water drainage principle remains unclear. We demonstrate that the apex structure enhances water drainage on the leaf by employing a curvature-controlled mechanism that is based on shaping a balance between reduced capillarity and enhanced gravity components. The leaf apex shape changes from round to triangle to acuminate, and the leaf surface changes from flat to bent, resulting in the increase of the water drainage rate, high-dripping frequencies, and the reduction of retention volumes.

View Article and Find Full Text PDF

Biological processes and technological applications cannot work without liquid control, where versatile water droplet manipulation is a significant issue. Droplet motion is conventionally manipulated by functionalizing the target surface or by utilizing additives in the droplet, still, with uncontrolled limitation on superhydrophobic surfaces since droplets are either unable to move fast or are difficult to stop while moving. A controllable high-speed "all-in-one" no-loss droplet manipulation, that is, in-plane moving and stopping/pinning in any direction on a superhydrophobic surface, with electrostatic charging is demonstrated.

View Article and Find Full Text PDF

Inkjet printing of water-based inks on superhydrophobic surfaces is important in high-resolution bioarray detection, chemical analysis, and high-performance electronic circuits and devices. Obtaining uniform spreading of a drop on a superhydrophobic surface is still a challenge. Uniform round drop spreading and high-resolution inkjet printing patterns are demonstrated on superhydrophobic surfaces without splash or rebound after high-speed impacting by introducing live-oligomeric surfactant adhesion.

View Article and Find Full Text PDF

Effective, long-range, and self-propelled water elevation and transport are important in industrial, medical, and agricultural applications. Although research has grown rapidly, existing methods for water film elevation are still limited. Scaling up for practical applications in an energy-efficient way remains a challenge.

View Article and Find Full Text PDF

The ballistic ejection of liquid drops by electrostatic manipulating has both fundamental and practical implications, from raindrops in thunderclouds to self-cleaning, anti-icing, condensation, and heat transfer enhancements. In this paper, the ballistic jumping behavior of liquid drops from a superhydrophobic surface is investigated. Powered by the repulsion of the same kind of charges, water drops can jump from the surface.

View Article and Find Full Text PDF