An a priori map is often unavailable for a mobile robot in a new environment. In a large-scale environment, relying on manual guidance to construct an environment map will result in a huge workload. Hence, an autonomous exploration algorithm is necessary for the mobile robot to complete the exploration actively.
View Article and Find Full Text PDFAutonomous grasping with an aerial manipulator in the applications of aerial transportation and manipulation is still a challenging problem because of the complex kinematics/dynamics and motion constraints of the coupled rotors-manipulator system. The paper develops a novel aerial manipulation system with a lightweight manipulator, an X8 coaxial octocopter and onboard visual tracking system. To implement autonomous grasping control, we develop a novel and efficient approach that includes trajectory planning, visual trajectory tracking and kinematic compensation.
View Article and Find Full Text PDFSensors (Basel)
September 2019
Map building and map-based relocalization techniques are important for unmanned vehicles operating in urban environments. The existing approaches require expensive high-density laser range finders and suffer from relocalization problems in long-term applications. This study proposes a novel map format called the ClusterMap, on the basis of which an approach to achieving relocalization is developed.
View Article and Find Full Text PDFThe problem of consensus in networked agent systems is revisited and applied to vision-based localization. A class of new consensus dynamics is introduced first, and sufficient conditions including the persistence of excitation on the coupling matrix for reaching consensus are derived. As an application of the proposed consensus dynamics, an adaptive localization algorithm then is proposed for autonomous robots equipped with primarily visual sensors in GPS-denied environments.
View Article and Find Full Text PDFThis paper presents a modeling approach to feature classification and environment mapping for indoor mobile robotics via a rotary ultrasonic array and fuzzy modeling. To compensate for the distance error detected by the ultrasonic sensor, a novel feature extraction approach termed "minimum distance of point" (MDP) is proposed to determine the accurate distance and location of target objects. A fuzzy model is established to recognize and classify the features of objects such as flat surfaces, corner, and cylinder.
View Article and Find Full Text PDFThe indoor environment has brought new challenges for micro Unmanned Aerial Vehicles (UAVs) in terms of their being able to execute tasks with high positioning accuracy. Conventional positioning methods based on GPS are unreliable, although certain circumstances of limited space make it possible to apply new technologies. In this paper, we propose a novel indoor self-positioning system of UAV based on a heterogeneous sensing system, which integrates data from a structured light scanner, ultra-wideband (UWB), and an inertial navigation system (INS).
View Article and Find Full Text PDFThis paper presents an efficient approach to achieve microparticles flocking with robotics and optical tweezers technologies. All particles trapped by optical tweezers can be automatically moved toward a predefined region without collision. The main contribution of this paper lies in the proposal of several solutions to the flocking manipulation of microparticles in microenvironments.
View Article and Find Full Text PDF