Objectives: Exploring the efficacy of an artificial intelligence (AI) model derived from the analysis of computed tomography (CT) images to precisely forecast the therapeutic outcomes of singular-session extracorporeal shock wave lithotripsy (ESWL) in the management of ureteral stones.
Methods: A total of 317 patients diagnosed clinically with ureteral stones were included in this investigation. Unenhanced CT was administered to the participants within the initial fortnight preceding the inaugural ESWL.
Background: Placenta accreta spectrum (PAS) is a significant contributor to maternal morbidity and mortality. Our objective was to develop a quantitative analysis framework utilizing magnetic resonance imaging (MRI)-anatomical-clinical features to predict 3 clinically significant parameters in patients with PAS: placenta subtype (invasive . non-invasive placenta), intraoperative bleeding (≥1,500 .
View Article and Find Full Text PDFObjectives: To determine whether 3D-CT multi-level anatomical features can provide a more accurate prediction of surgical decision-making for partial or radical nephrectomy in renal cell carcinoma.
Methods: This is a retrospective study based on multi-center cohorts. A total of 473 participants with pathologically proved renal cell carcinoma were split into the internal training and the external testing set.
Summary: T cells play a critical role in cellular immune responses to pathogens and cancer and can be activated and expanded by Major Histocompatibility Complex (MHC)-presented antigens contained in peptide vaccines. We present a machine learning method to optimize the presentation of peptides by class II MHCs by modifying their anchor residues. Our method first learns a model of peptide affinity for a class II MHC using an ensemble of deep residual networks, and then uses the model to propose anchor residue changes to improve peptide affinity.
View Article and Find Full Text PDFThe RIG-I receptor induces the innate antiviral responses upon sensing RNA viruses. The mechanisms through which RIG-I optimizes the strength of the downstream signaling remain incompletely understood. In this study, we identified that NSUN5 could potentiate the RIG-I innate signaling pathway.
View Article and Find Full Text PDFMotivation: The precise targeting of antibodies and other protein therapeutics is required for their proper function and the elimination of deleterious off-target effects. Often the molecular structure of a therapeutic target is unknown and randomized methods are used to design antibodies without a model that relates antibody sequence to desired properties.
Results: Here, we present Ens-Grad, a machine learning method that can design complementarity determining regions of human Immunoglobulin G antibodies with target affinities that are superior to candidates derived from phage display panning experiments.
Motivation: The computational modeling of peptide display by class I major histocompatibility complexes (MHCs) is essential for peptide-based therapeutics design. Existing computational methods for peptide-display focus on modeling the peptide-MHC-binding affinity. However, such models are not able to characterize the sequence features for the other cellular processes in the peptide display pathway that determines MHC ligand selection.
View Article and Find Full Text PDFBackground: Visualization tools for deep learning models typically focus on discovering key input features without considering how such low level features are combined in intermediate layers to make decisions. Moreover, many of these methods examine a network's response to specific input examples that may be insufficient to reveal the complexity of model decision making.
Results: We present DeepResolve, an analysis framework for deep convolutional models of genome function that visualizes how input features contribute individually and combinatorially to network decisions.
The computational identification of peptides that can bind the major histocompatibility complex (MHC) with high affinity is an essential step in developing personal immunotherapies and vaccines. We introduce PUFFIN, a deep residual network-based computational approach that quantifies uncertainty in peptide-MHC affinity prediction that arises from observational noise and the lack of relevant training examples. With PUFFIN's uncertainty metrics, we define binding likelihood, the probability a peptide binds to a given MHC allele at a specified affinity threshold.
View Article and Find Full Text PDFThe representation and discovery of transcription factor (TF) sequence binding specificities is critical for understanding gene regulatory networks and interpreting the impact of disease-associated noncoding genetic variants. We present a novel TF binding motif representation, the -mer set memory (KSM), which consists of a set of aligned -mers that are overrepresented at TF binding sites, and a new method called KMAC for de novo discovery of KSMs. We find that KSMs more accurately predict in vivo binding sites than position weight matrix (PWM) models and other more complex motif models across a large set of ChIP-seq experiments.
View Article and Find Full Text PDFDNA methylation plays a crucial role in the establishment of tissue-specific gene expression and the regulation of key biological processes. However, our present inability to predict the effect of genome sequence variation on DNA methylation precludes a comprehensive assessment of the consequences of non-coding variation. We introduce CpGenie, a sequence-based framework that learns a regulatory code of DNA methylation using a deep convolutional neural network and uses this network to predict the impact of sequence variation on proximal CpG site DNA methylation.
View Article and Find Full Text PDFWe present a novel ensemble-based computational framework, EnsembleExpr, that achieved the best performance in the Fourth Critical Assessment of Genome Interpretation expression quantitative trait locus "(eQTL)-causal SNPs" challenge for identifying eQTLs and prioritizing their gene expression effects. eQTLs are genome sequence variants that result in gene expression changes and are thus prime suspects in the search for contributions to the causality of complex traits. When EnsembleExpr is trained on data from massively parallel reporter assays, it accurately predicts reporter expression levels from unseen regulatory sequences and identifies sequence variants that exhibit significant changes in reporter expression.
View Article and Find Full Text PDFIn many human diseases, associated genetic changes tend to occur within noncoding regions, whose effect might be related to transcriptional control. A central goal in human genetics is to understand the function of such noncoding regions: given a region that is statistically associated with changes in gene expression (expression quantitative trait locus [eQTL]), does it in fact play a regulatory role? And if so, how is this role "coded" in its sequence? These questions were the subject of the Critical Assessment of Genome Interpretation eQTL challenge. Participants were given a set of sequences that flank eQTLs in humans and were asked to predict whether these are capable of regulating transcription (as evaluated by massively parallel reporter assays), and whether this capability changes between alternative alleles.
View Article and Find Full Text PDFEnhancers and promoters commonly occur in accessible chromatin characterized by depleted nucleosome contact; however, it is unclear how chromatin accessibility is governed. We show that log-additive cis-acting DNA sequence features can predict chromatin accessibility at high spatial resolution. We develop a new type of high-dimensional machine learning model, the Synergistic Chromatin Model (SCM), which when trained with DNase-seq data for a cell type is capable of predicting expected read counts of genome-wide chromatin accessibility at every base from DNA sequence alone, with the highest accuracy at hypersensitive sites shared across cell types.
View Article and Find Full Text PDFMotivation: Convolutional neural networks (CNN) have outperformed conventional methods in modeling the sequence specificity of DNA-protein binding. Yet inappropriate CNN architectures can yield poorer performance than simpler models. Thus an in-depth understanding of how to match CNN architecture to a given task is needed to fully harness the power of CNNs for computational biology applications.
View Article and Find Full Text PDFThe contribution of repetitive elements to quantitative human traits is largely unknown. Here we report a genome-wide survey of the contribution of short tandem repeats (STRs), which constitute one of the most polymorphic and abundant repeat classes, to gene expression in humans. Our survey identified 2,060 significant expression STRs (eSTRs).
View Article and Find Full Text PDFMotivation: The majority of disease-associated variants identified in genome-wide association studies reside in noncoding regions of the genome with regulatory roles. Thus being able to interpret the functional consequence of a variant is essential for identifying causal variants in the analysis of genome-wide association studies.
Results: We present GERV (generative evaluation of regulatory variants), a novel computational method for predicting regulatory variants that affect transcription factor binding.
Boolean implications (if-then rules) provide a conceptually simple, uniform and highly scalable way to find associations between pairs of random variables. In this paper, we propose to use Boolean implications to find relationships between variables of different data types (mutation, copy number alteration, DNA methylation and gene expression) from the glioblastoma (GBM) and ovarian serous cystadenoma (OV) data sets from The Cancer Genome Atlas (TCGA). We find hundreds of thousands of Boolean implications from these data sets.
View Article and Find Full Text PDF