Objective: We aimed to explore the relationship between remote resistance exercise programs delivered via a smartphone application and skeletal muscle mass among elderly patients with type 2 diabetes, utilizing real-world data.
Methods: The resistance exercises were provided through Joymotion®, a web-based telerehabilitation smartphone application (Shanghai Medmotion Medical Management Co., Ltd).
J Stomatol Oral Maxillofac Surg
September 2024
Achieving robust soft tissue integration around dental implants is crucial for long-term clinical success, as it forms a protective biological seal against bacterial invasion. However, the soft tissue attachment to implants is relatively deficient compared to natural teeth, particularly in the connective tissue region lacking sufficient gingival fibroblasts and collagen fiber alignment. This study proposed an innovative strategy to enhance peri‑implant soft tissue integration by modulating gingival fibroblast behavior via photothermal conversion.
View Article and Find Full Text PDFObjective: To test the diagnostic performance of a deep-learning Two-Stream Compare and Contrast Network (TSCCN) model for differentiating benign and malignant vertebral compression fractures (VCFs) based on MRI.
Methods: We tested a deep-learning system in 123 benign and 86 malignant VCFs. The median sagittal T1-weighted images (T1WI), T2-weighted images with fat suppression (T2WI-FS), and a combination of both (thereafter, T1WI/T2WI-FS) were used to validate TSCCN.
Foodborne pathogen contamination is a major safety issue for many foods and is causing concern worldwide. In this study, a detection system based on magnetic separation, multiplex PCR (MPCR) and capillary electrophoresis (CE) technologies was developed for the simultaneous detection of four foodborne pathogens. Magnetic separation technology is used to rapidly capture pathogenic bacteria in food samples, and then a combination of MPCR and CE can be used to greatly increase detection sensitivity.
View Article and Find Full Text PDFHand, foot, and mouth disease (HFMD) is a common viral illness affecting infants and children that is usually caused by Coxsackievirus A16 (CVA-16). To diagnose HFMD, we developed a method for rapid detection of CVA-16 based on reverse transcription-polymerase spiral reaction (RT-PSR). We used two pairs of primers that specifically recognize the conserved sequences of VP1 coding region of CVA-16, and template RNA was reverse transcribed and amplified in a single tube under isothermal conditions, total reaction time could be reduced to less than 40 min.
View Article and Find Full Text PDF