Publications by authors named "Haoyan Huo"

Metastable polymorphs often result from the interplay between thermodynamics and kinetics. Despite advances in predictive synthesis for solution-based techniques, there remains a lack of methods to design solid-state reactions targeting metastable materials. Here, we introduce a theoretical framework to predict and control polymorph selectivity in solid-state reactions.

View Article and Find Full Text PDF

Chemical short-range-order has been widely noticed to dictate the electrochemical properties of Li-excess cation-disordered rocksalt oxides, a class of cathode based on earth abundant elements for next-generation high-energy-density batteries. Existence of short-range-order is normally evidenced by a diffused intensity pattern in reciprocal space, however, derivation of local atomic arrangements of short-range-order in real space is hardly possible. Here, by a combination of aberration-corrected scanning transmission electron microscopy, electron diffraction, and cluster-expansion Monte Carlo simulations, we reveal the short-range-order is a convolution of three basic types: tetrahedron, octahedron, and cube.

View Article and Find Full Text PDF

Synthesis prediction is a key accelerator for the rapid design of advanced materials. However, determining synthesis variables such as the choice of precursor materials is challenging for inorganic materials because the sequence of reactions during heating is not well understood. In this work, we use a knowledge base of 29,900 solid-state synthesis recipes, text-mined from the scientific literature, to automatically learn which precursors to recommend for the synthesis of a novel target material.

View Article and Find Full Text PDF

The ongoing COVID-19 pandemic produced far-reaching effects throughout society, and science is no exception. The scale, speed, and breadth of the scientific community's COVID-19 response lead to the emergence of new research at the remarkable rate of more than 250 papers published per day. This posed a challenge for the scientific community as traditional methods of engagement with the literature were strained by the volume of new research being produced.

View Article and Find Full Text PDF

There currently exist no quantitative methods to determine the appropriate conditions for solid-state synthesis. This not only hinders the experimental realization of novel materials but also complicates the interpretation and understanding of solid-state reaction mechanisms. Here, we demonstrate a machine-learning approach that predicts synthesis conditions using large solid-state synthesis data sets text-mined from scientific journal articles.

View Article and Find Full Text PDF

Gold nanoparticles are highly desired for a range of technological applications due to their tunable properties, which are dictated by the size and shape of the constituent particles. Many heuristic methods for controlling the morphological characteristics of gold nanoparticles are well known. However, the underlying mechanisms controlling their size and shape remain poorly understood, partly due to the immense range of possible combinations of synthesis parameters.

View Article and Find Full Text PDF

The development of a materials synthesis route is usually based on heuristics and experience. A possible new approach would be to apply data-driven approaches to learn the patterns of synthesis from past experience and use them to predict the syntheses of novel materials. However, this route is impeded by the lack of a large-scale database of synthesis formulations.

View Article and Find Full Text PDF

A bottleneck in efficiently connecting new materials discoveries to established literature has arisen due to an increase in publications. This problem may be addressed by using named entity recognition (NER) to extract structured summary-level data from unstructured materials science text. We compare the performance of four NER models on three materials science datasets.

View Article and Find Full Text PDF

Autonomous experimentation driven by artificial intelligence (AI) provides an exciting opportunity to revolutionize inorganic materials discovery and development. Herein, we review recent progress in the design of self-driving laboratories, including robotics to automate materials synthesis and characterization, in conjunction with AI to interpret experimental outcomes and propose new experimental procedures. We focus on efforts to automate inorganic synthesis through solution-based routes, solid-state reactions, and thin film deposition.

View Article and Find Full Text PDF

In this paper we develop the stability rules for NASICON-structured materials, as an example of compounds with complex bond topology and composition. By first-principles high-throughput computation of 3881 potential NASICON phases, we have developed guiding stability rules of NASICON and validated the ab initio predictive capability through the synthesis of six attempted materials, five of which were successful. A simple two-dimensional descriptor for predicting NASICON stability was extracted with sure independence screening and machine learned ranking, which classifies NASICON phases in terms of their synthetic accessibility.

View Article and Find Full Text PDF

Research publications are the major repository of scientific knowledge. However, their unstructured and highly heterogenous format creates a significant obstacle to large-scale analysis of the information contained within. Recent progress in natural language processing (NLP) has provided a variety of tools for high-quality information extraction from unstructured text.

View Article and Find Full Text PDF

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

View Article and Find Full Text PDF

Materials discovery has become significantly facilitated and accelerated by high-throughput ab-initio computations. This ability to rapidly design interesting novel compounds has displaced the materials innovation bottleneck to the development of synthesis routes for the desired material. As there is no a fundamental theory for materials synthesis, one might attempt a data-driven approach for predicting inorganic materials synthesis, but this is impeded by the lack of a comprehensive database containing synthesis processes.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session53kmtkptipf2rnjndva9t6hqc6fajs8p): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once