Publications by authors named "Haowei Duan"

Recent advancements in wearable electrochemical biosensors have opened new avenues for on-body and continuous detection of biomarkers, enabling personalized, real-time, and preventive healthcare. While glucose monitoring has set a precedent for wearable biosensors, the field is rapidly expanding to include a wider range of analytes crucial for disease diagnosis, treatment, and management. In this review, recent key innovations are examined in the design and manufacturing underpinning these biosensing platforms including biorecognition elements, signal transduction methods, electrode and substrate materials, and fabrication techniques.

View Article and Find Full Text PDF

Tetrahedral DNA nanostructure (TDN) is highly promising in developing electrochemical aptamer-based (E-AB) sensors for biomolecular detection, owing to its inherit programmability, spatial orientation and structural robustness. However, current interrogation strategies applied for TDN-based E-AB sensors, including enzyme-based amperometry, voltammetry, and electrochemical impedance spectroscopy, either require complicated probe design or suffer from limited applicability or selectivity. In this study, a TDN pendulum-empowered E-AB sensor interrogated by chronoamperometry for reagent-free and continuous monitoring of a blood clotting enzyme, thrombin, was developed.

View Article and Find Full Text PDF

Background: Several studies report that radiomics provides additional information for predicting hematoma expansion in intracerebral hemorrhage (ICH). However, the comparison of diagnostic performance of radiomics for predicting revised hematoma expansion (RHE) remains unclear.

Methods: The cohort comprised 312 consecutive patients with ICH.

View Article and Find Full Text PDF

Stroke is a highly lethal condition, with intracranial vessel occlusion being one of its primary causes. Intracranial vessel occlusion can typically be categorized into four types, each requiring different intervention measures. Therefore, the automatic and accurate classification of intracranial vessel occlusions holds significant clinical importance for assessing vessel occlusion conditions.

View Article and Find Full Text PDF

Electrochemical aptamer-based (E-AB) sensors offer exciting potential for real-time tracking of various biomarkers, such as proteins and small molecules, due to their exceptional selectivity and adaptability. However, most E-AB sensors rely on planar gold structures, which inherently limit their sensitivity and operational stability for continuous monitoring of biomarkers. Although gold nanostructures have recently enhanced E-AB sensor performance, no studies have explored the combination of gold nanostructure with other types of nanomaterials for continuous molecular monitoring.

View Article and Find Full Text PDF

Continuous detection of proteins is crucial for health management and biomedical research. Electrochemical aptamer-based (E-AB) sensor that relies on binding affinity between a recognition oligonucleotide and its specific target is a versatile platform to fulfill this purpose. Yet, the vast majority of E-AB sensors are characterized by voltammetric methods, which suffer from signal drifts and low-frequency data acquisition during continuous operations.

View Article and Find Full Text PDF

Background: Liquid metal (LM) can be integrated into microfluidic channel, bringing new functionalities of microfluidics and opening a new window for soft microfluidic electronics, due to the superior advantages of the conductivity and deformability of LMs. However, patterning the LMs into microfluidic channels requires either selective surface wetting or complex fabrication process.

Results: In this work, we develop a method to pattern the LMs onto the soft elastomer via soft lithographic process for fabrication of soft microfluidic sensors without the surface modification, bulky facilities, and complicated processes.

View Article and Find Full Text PDF

Hydrogen peroxide (HO) is a common chemical used in many industries and can be found in various biological environments, water, and air. Yet, HO in a certain range of concentrations can be hazardous and toxic. Therefore, it is crucial to determine its concentration at different conditions for safety and diagnostic purposes.

View Article and Find Full Text PDF