Publications by authors named "Haotong Wei"

The filterless single-pixel imaging technology is anticipated to hold tremendous competitiveness in diverse imaging applications. Nevertheless, achieving single-pixel color imaging without a filter remains a formidable challenge. Here a lead-free perovskite hemispherical photodetector is reported for filterless single-pixel color imaging.

View Article and Find Full Text PDF

Perovskite heterojunctions combine the advantages of two different components but suffer difficulties in the tightness of interconnection and limitation of material selection. Here we report an electric field-driven ion deposition (EFID) strategy that controllably deposits perovskite ions on heterogeneous single crystals to form a gradient heterojunction with tight integration. The interconnection force of the gradient heterojunction by the EFID method is much better than that of the solution-grown heterojunction, which is easily decomposed.

View Article and Find Full Text PDF

Polyoxometalates (POMs) have shown prominence in the field of semiconductive materials in recent years. However, electronic applications based on these emerging materials are still in their early stages. Here, a sensitive and water-stable F-PEA-ZnW X-ray detector has been designed and constructed for hard X-ray detection and imaging.

View Article and Find Full Text PDF

Advanced photodetectors are crucial for high-fidelity optical communication. However, the tradeoff between high external quantum efficiency (EQE) and high light fidelity (Li-Fi) frequency often limits data transmission accuracy and timeliness. Here, we report a photodetector consisting of lead sulfide (PbS) colloidal quantum dots (CQDs) with near-infrared responsiveness and perovskite frameworks responsible for the charge transport to overcome the EQE × Li-Fi constraint.

View Article and Find Full Text PDF

The utilization of perovskite materials in flexible optoelectronics is experiencing distinct diversification including X-ray detection applications. Here, we report the oriented alignment of cesium lead bromide (CsPbBr) single-crystal arrays on flexible polydimethylsiloxane (PDMS) substrates. By precisely confining the crystallization process within spatially delimited precursor droplets, we achieve a well-oriented crystal alignment through the spontaneous rotation of the CsPbBr microcuboids.

View Article and Find Full Text PDF

Patterned arrays of perovskite single crystals can avoid signal cross-talk in optoelectronic devices, while precise crystal distribution plays a crucial role in enhancing device performance and uniformity, optimizing photoelectric characteristics, and improving optical management. Here, we report a strategy of droplet-assisted self-alignment to precisely assemble the perovskite single-crystal arrays (PSCAs). High-quality single-crystal arrays of hybrid methylammonium lead bromide (MAPbBr) and methylammonium lead chloride (MAPbCl), and cesium lead bromide (CsPbBr) can be precipitated under a formic acid vapor environment.

View Article and Find Full Text PDF

In traditional optical wireless communication (OWC) systems, the simultaneous use of multiple sets of light-emitting diodes (LEDs) and photodetectors (PDs) increases the system complexity and instability. Here we report bifunctional light-emitting photodetectors (LEPDs) fabricated with quasi-2D perovskite (F-PEA)CsPbIBr as light-emitting/detecting layers for efficient, miniaturized, and intelligent bidirectional OWC. By simply changing the solvent composition of the precursor solution and using antisolvent engineering, we manipulated the crystal orientation and phase distribution of (F-PEA)CsPbIBr, realizing high irradiance (4.

View Article and Find Full Text PDF

2D perovskites have greatly improved moisture stability owing to the large organic cations embedded in the inorganic octahedral structure, which also suppresses the ions migration and reduces the dark current. The suppression of ions migration by 2D perovskites effectively suppresses excessive device noise and baseline drift and shows excellent potential in the direct X-ray detection field. In addition, 2D perovskites have gradually emerged with many unique properties, such as anisotropy, tunable bandgap, high photoluminescence quantum yield, and wide range exciton binding energy, which continuously promote the development of 2D perovskites in ionizing radiation detection.

View Article and Find Full Text PDF

Advanced photodetectors with intelligent functions are expected to take an important role in future technology. However, completing complex detection tasks within a limited number of pixels is still challenging. Here, we report a differential perovskite hemispherical photodetector serving as a smart locator for intelligent imaging and location tracking.

View Article and Find Full Text PDF

Sensitive and stable perovskite X-ray detectors are attractive in low-dosage medical examinations. The high sensitivity, tunable chemical compositions, electronic dimensions, and low-cost raw materials make perovskites promising next-generation semiconductors. However, their ionic nature brings serious concerns about their chemical and water stability, limiting their applications in well-established technologies like crystal polishing, micro-processing, photolithography, etc.

View Article and Find Full Text PDF

Metal halide scintillators serve as promising candidates for X-ray detection due to their high attenuation coefficients, high light yields, and low-cost solution-processable characteristics. However, the issues of humidity/thermal quenching and mechanical fragility, remain obstacles to the broad and diversified development of metal halide scintillators. Here, this work reports a lead-free, water-stable, stretchable, and self-healing (ethylenebis-triphenylphosphonium manganese (II) bromide (CHP)MnBr organogel scintillator that meets X-ray imaging in complex scenarios.

View Article and Find Full Text PDF

Tin perovskites have emerged as a promising alternative material to address the toxicity of lead perovskites and the low bandgap of around 1.1 eV is also compatible with tandem solar cell applications. Nevertheless, the optoelectronic performance of solution-processed tin perovskite single-crystal counterparts still lags behind because of the tin instability under ambient conditions during crystal growth and limited reductants to protect the Sn ions from oxidation.

View Article and Find Full Text PDF

Recent years have witnessed an increasing focus on graph-based semi-supervised learning with Graph Neural Networks (GNNs). Despite existing GNNs having achieved remarkable accuracy, research on the quality of graph supervision information has inadvertently been ignored. In fact, there are significant differences in the quality of supervision information provided by different labeled nodes, and treating supervision information with different qualities equally may lead to sub-optimal performance of GNNs.

View Article and Find Full Text PDF

Film uniformity of solution-processed layers is the cornerstone of large-area perovskite light-emitting diodes, which is often determined by the 'coffee-ring effect'. Here we demonstrate a second factor that cannot be ignored is the solid-liquid interface interaction between substrate and precursor and can be optimized to eliminate rings. A perovskite film with rings can be formed when cations dominate the solid-liquid interface interaction; whereas smooth and homogeneous perovskite emitting layers are generated when anions and anion groups dominate the interaction.

View Article and Find Full Text PDF

The low-dimensional halide perovskites have attracted increasing attention due to their improved moisture stability, reduced defects, and suppressed ions migration in many optoelectronic devices such as solar cells, light-emitting diodes, X-ray detectors, and so on. However, they are still limited by their large band gap and short charge carriers' diffusion length. Here, we demonstrate that the introduction of metal ions into organic interlayers of two-dimensional (2D) perovskite by cross-linking the copper paddle-wheel cluster-based lead bromide ([Cu(O C-(CH ) -NH ) ]PbBr ) perovskite single crystals with coordination bonds can not only significantly reduce the perovskite band gap to 0.

View Article and Find Full Text PDF

The diversity of organic cations greatly enriches the species of 2D perovskites; traditional 2D Ruddlesden-Popper (RP) and Dion-Jacobson (DJ) perovskites are synthesized by two different organic amines. Here, according to the difference in pKa values between conjugated acids of monoprotonated and biprotonated 4-(2-Aminoethyl)pyridine (4AEPy) ions, the 2D perovskites of RP (4AEPy) PbI and DJ (4AEPy)PbI from same organic amine is reported, which can realize reversible transformation under the treatment of HI and NH , respectively. The interaction of N-H···N hydrogen bond between adjacent organic molecules in (4AEPy) PbI leads to the bending conformation of ethylamine groups, which results in a 2.

View Article and Find Full Text PDF

Quasi-2D perovskites have been demonstrated to be competitive materials in the photodetection fields due to the enhanced moisture stability by large organic cations. However, as the increasing demands of modern technology, it is still challenging to combine the flexibility with the capability of weak light detection in a low-cost way. Here, amides, carboxylic acids, and anhydrides groups-rich carbonized polymer dots (CPDs) were employed to fill in the perovskite grain boundaries, which can passivate the point defects of perovskite by coordinating with the unbonded Pb atoms, and reduce the leakage current.

View Article and Find Full Text PDF

Sphere imagers featuring specific wavelength recognition and wide-angle imaging are required to meet the fast development of modern technology. However, it is still challenging to deposit high-quality photosensitive layers on sphere substrates from low-cost solution processes. Here we report spray-coated quasi-two-dimensional phenylethylammonium/formamidinium lead halide (PEAFAPbX) perovskite hemispherical photodetectors.

View Article and Find Full Text PDF

Halide perovskites with various compositions are potential candidates in low-dosage X-ray detection due to their large sensitivity and tunable optoelectronic properties. Here, cations engineering induced dimensional evolution of halide perovskites between 0D, 2D, and 3D is reported. Centimeter-sized 2D lead-free perovskite single-crystal of 4-fluorophenethylammonium antimony iodide (FPEA SbI ) is synthesized.

View Article and Find Full Text PDF

Metal halide perovskite scintillators encounter unprecedented opportunities in indirect ionizing radiation detection due to their high quantum yields. However, the long scintillation lifetime of microseconds upon irradiation, known as the afterglow phenomenon, obviously limits their fast development. Here, a new type of hybrid X-ray detector wafer combining direct methylamine lead iodide (MAPbI ) semiconductor and indirect zero-dimensional cesium copper iodide (Cs Cu I ) scintillator through low-cost fast tableting processes is reported.

View Article and Find Full Text PDF

Near-infrared (NIR) II detection at weak flux intensity is required in medical imaging and is especially urgent in light of the low quantum efficiency of NIR-II dyes. The low responsivity of traditional photodetectors in this region limits image quality. Here, we report a NIR-II photodetector with high gain based on perovskite coupled PbS colloidal quantum dots (CQDs).

View Article and Find Full Text PDF

2D perovskite single crystals have emerged as excellent optoelectronic materials owing to their unique anisotropic properties. However, growing large 2D perovskite single crystals remains challenging and time-consuming. Here, a new composition of lead-free 2D perovskite-4-fluorophenethylammonium bismuth iodide [(F-PEA) BiI ] is reported.

View Article and Find Full Text PDF

Halide perovskite single crystals (HPSCs) provide a unique platform to study the optoelectronic properties of such emerging semiconductor materials, while the temperature induced crystal growth method often has an increased solute integration speed and/or unavoidable solute consumption, resulting in a soaring or slumping crystal growth rate of HPSCs. Here, we developed a universal and facile solvent-volatilization-limited-growth (SVG) strategy to finely control the crystal growth rate by the fine-control-valve for high quality crystal grown through solution processes. The grown HPSCs by SVG method exhibited a record low trap density of 2.

View Article and Find Full Text PDF

Solution-processed perovskites as emerging semiconductors have achieved unprecedented milestones in sensor optoelectric devices. Stability along with the device noise issues are the major obstacle for photodetectors to compete with the traditional devices. Here, we demonstrated that l-ascorbic acid (l-AA) as a polyhydroxy ester can coordinate with the amino group of formamidine cations (FA) through multiple hydrogen bond interactions to stabilize the perovskite, which protect the FA ions from nucleophile attack and effectively suppress the degradation of FA ions, improving the perovskite stability and suppressing the device noise to below 0.

View Article and Find Full Text PDF