To address the global phosphorus crisis and solve the problem of eutrophication in water bodies, the recovery of phosphate from wastewater for use as a slow-release fertilizer and to improve the slow-release performance of fertilizers is considered an effective way. In this study, amine-modified lignin (AL) was prepared from industrial alkali lignin (L) for phosphate recovery from water bodies, and then the recovered phosphorus-rich aminated lignin (AL-P) was used as a slow-release N and P fertilizer. Batch adsorption experiments showed that the adsorption process was consistent with the Pseudo-second-order kinetics and Langmuir model.
View Article and Find Full Text PDFA high-performance nitrogen-doped lignin-based carbon material (ILAC-N) was synthesized using industrial lignin and urea by hydrothermal and activation, as an absorbent of tetracycline hydrochloride (TC). The results showed that the ILAC-N comprises a double-channeled structure with micro and mesopores. It exhibits an excellent adsorption capacity of TC across a wide pH range (pH 2-11), with the highest adsorption capacity of 1396 mg g at 323 K.
View Article and Find Full Text PDF