Publications by authors named "Haotian Jia"

Prunus mume, the only plant in the genus Prunus of the Rosaceae family with a distinctive floral scent, can release a large number of aromatic substances into the air when it blooms. Among these, benzyl acetate has been recognized as a characteristic aromatic substance. In this study, we extracted and analyzed the change in volatility and endogenous content of benzyl acetate using the 'Caizhiwufen' P.

View Article and Find Full Text PDF

The species consists of uniquely aromatic woody perennials with large amounts of free aromatic substances in the flower cells. Uridine diphosphate glycosyltransferase (UGT) modifies these free aromatic substances into water-soluble glycoside-bound volatiles (GBVs) which play an important role in regulating the use of volatiles by plants for information exchange, defense, and stress tolerance. To investigate the changes in the glycosidic state of aromatic substances during the flowering period of and discern the location and expression of glycoside synthesis genes, we extracted and enzymatically hydrolyzed GBVs of and then utilized gas chromatography-mass spectrometry (GC-MS) to characterize and analyze the types and contents of GBV glycosides.

View Article and Find Full Text PDF

This study aimed to evaluate the effects of administration of sodium humate (HNa) and glutamine (Gln) on growth performance, diarrhoea incidence, serum parameters, and faecal microflora of pre-weaned Holstein calves. In a 57-day experiment, 28 healthy newborn female calves were randomly allocated to four treatment groups: (1) CON (control); (2) HNa (basal diet + 5% HNa); (3) Gln (basal diet + 1% Gln); and (4) HNa + Gln (basal diet + 5% HNa + 1% Gln). The calves in the CON group were fed with basal diet.

View Article and Find Full Text PDF

This study aimed to evaluate the effects of the administration of sodium humate (NaH) on the growth performance, diarrhea incidence, and fecal microflora of pre-weaned Holstein calves. In a 53-day experiment, forty healthy newborn female calves were randomly allocated to the following four treatment groups: (1) control (basal diet); (2) 1-gram NaH (basal diet extra orally supplemented with 1 g of NaH dissolved in 100 mL of milk or milk replacer daily); (3) 3-gram NaH (basal diet extra orally supplemented with 3 g of NaH dissolved in 100 mL of milk or milk replacer daily); and (4) 5-gram NaH (basal diet extra orally supplemented with 5 g of NaH dissolved in 100 mL of milk or milk replacer daily). NaH was mixed with milk (d 2-20) or milk replacer (d 21-53).

View Article and Find Full Text PDF