Compared to traditional lithium metal batteries, anode-free lithium metal batteries use bare current collectors as an anode instead of Li metal, making them highly promising for mass production and achieving high-energy density. The current collector, as the sole component of the anode, is crucial in lithium deposition-stripping behavior and greatly impacts the rate of Li depletion from the cathode. In this study, to investigate the lithiophilicity effect of the current collector on the solid electrolyte interface (SEI) film construction and cycling performance of anode-free lithium batteries, various lightweight paper-based current collectors were prepared by electroless plating Cu and lipophilic Ag on low-dust paper (LDP).
View Article and Find Full Text PDFPolysulfide shuttle and sluggish sulfur redox kinetics remain key challenges in lithium-sulfur batteries. Previous researches have shown that introducing oxygen into transition metal sulfides helps to capture polysulfides and enhance their conversion kinetics. Based on this, further investigations are conducted to explore the impact of oxygen doping levels on the physical-chemical properties and electrocatalytic performance of MoS.
View Article and Find Full Text PDFLithium-sulfur (Li-S) batteries are expected to be one of the next generations of high-energy-density battery systems due to their high theoretical energy density of 2600 Wh kg. Embracing the trends toward flexibility, lightweight design, and cost-effectiveness, paper-based electrodes offer a promising alternative to traditional coated cathodes in Li-S batteries. Within paper-based electrodes, conductive fibers such as carbon nanotubes (CNTs) play a crucial role.
View Article and Find Full Text PDF