Publications by authors named "Haotan Zhang"

Parkinson's disease (PD) is a serious neurodegenerative disorder marked by significant clinical and progression heterogeneity. This study aimed at addressing heterogeneity of PD through integrative analysis of various data modalities. We analyzed clinical progression data (≥5 years) of individuals with de novo PD using machine learning and deep learning, to characterize individuals' phenotypic progression trajectories for PD subtyping.

View Article and Find Full Text PDF

It has been presumed that rheumatoid arthritis (RA) joint pain is related to inflammation in the synovium; however, recent studies reveal that pain scores in patients do not correlate with synovial inflammation. We developed a machine-learning approach (graph-based gene expression module identification or GbGMI) to identify an 815-gene expression module associated with pain in synovial biopsy samples from patients with established RA who had limited synovial inflammation at arthroplasty. We then validated this finding in an independent cohort of synovial biopsy samples from patients who had early untreated RA with little inflammation.

View Article and Find Full Text PDF

Unlabelled: It has been presumed that rheumatoid arthritis (RA) joint pain is related to inflammation in the synovium; however, recent studies reveal that pain scores in patients do not correlate with synovial inflammation. We identified a module of 815 genes associated with pain, using a novel machine learning approach, Graph-based Gene expression Module Identification (GbGMI), in samples from patients with longstanding RA, but limited synovial inflammation at arthroplasty, and validated this finding in an independent cohort of synovial biopsy samples from early, untreated RA patients. Single-cell RNA-seq analyses indicated these genes were most robustly expressed by lining layer fibroblasts and receptor-ligand interaction analysis predicted robust lining layer fibroblast crosstalk with pain sensitive CGRP+ dorsal root ganglion sensory neurons.

View Article and Find Full Text PDF

The abundance of biomedical knowledge gained from biological experiments and clinical practices is an invaluable resource for biomedicine. The emerging biomedical knowledge graphs (BKGs) provide an efficient and effective way to manage the abundant knowledge in biomedical and life science. In this study, we created a comprehensive BKG called the integrative Biomedical Knowledge Hub (iBKH) by harmonizing and integrating information from diverse biomedical resources.

View Article and Find Full Text PDF