Spinal cord injury (SCI) is a devastating condition of the central nervous system (CNS) with high global rates of disability and mortality, and no effective cure currently available. Microglia play a critical role in the progression of SCI, and enhancing their metabolic function may facilitate tissue repair and recovery. Mitochondrial dysfunction is a key feature of metabolic impairment, with the regulation of autophagy being essential for maintaining mitochondrial homeostasis and cell survival.
View Article and Find Full Text PDFSpinal cord injury (SCI) represents a severe trauma to the central nervous system, resulting in significant disability and imposing heavy burdens on families and society. Pathophysiological changes following SCI often trigger secondary injuries that complicate treatment. Bone marrow mesenchymal stem cells (BM-MSCs) have become a focal point of research due to their multifunctionality and self-renewal capabilities; however, their survival and neuroprotective functions are compromised in inflammatory environments.
View Article and Find Full Text PDFThe treatment of peripheral neuropathy resulting from diabetes primarily emphasizes neurotrophic medications. However, a growing body of clinical studies indicates that neuroinflammation plays a significant role in the pathogenesis of neuropathic pain. This has spurred active exploration of treatment strategies leveraging nanomedicine for diseases, aiming for superior therapeutic outcomes.
View Article and Find Full Text PDFChondroitin sulfate proteoglycans (CSPGs) and proteoglycan receptor protein tyrosine phosphatase σ (PTPσ) play a critical role in the pathology of spinal cord injury (SCI). CSPGs can be induced by autophagy inhibition in astrocyte. However, CSPG's impact on autophagy and its role in SCI is still unknown.
View Article and Find Full Text PDFSpinal cord injury is a serious traumatic nervous system disorder characterized by extensive neuronal apoptosis. Oxidative stress, a key factor in neuronal apoptosis, leads to the accumulation of reactive oxygen species, making mitochondrial quality control within cells crucial. Previous studies have demonstrated zinc's anti-inflammatory and anti-apoptotic properties in protecting mitochondria during spinal cord injury treatment, yet the precise mechanisms remain elusive.
View Article and Find Full Text PDFTraumatic spinal cord injury (SCI), often resulting from external physical trauma, initiates a series of complex pathophysiological cascades, with severe cases leading to paralysis and presenting significant clinical challenges. Traditional diagnostic and therapeutic approaches, particularly X-ray imaging, are prevalent in clinical practice, yet the limited efficacy and notable side effects of pharmacological treatments at the injury site continue to pose substantial hurdles. Addressing these challenges, recent advancements have been made in the development of multifunctional nanotechnology and synergistic therapies, enhancing both the efficacy and safety of radiographic techniques.
View Article and Find Full Text PDFThe recovery of infectious wound tissues presents a significant global health challenge due to the impediments posed by the harsh healing microenvironment, which includes ongoing bacterial invasion, high oxidative stress, inflammatory response, and impaired angiogenesis. To overcome the above issues, we propose a composite hydrogel based on the multiple-crosslinked mechanism involving the covalent network of CC bonds within catechol and maleic-modified HA (CMHA), the self-assembly network of glycyrrhizic acid (GA), and the metal-polyphenol coordination induced by ZHMCe for accelerating infectious wound healing. The resulting CMHA/GA/ZHMCe hydrogels demonstrate enhanced mechanical, adhesive, antioxidative, and antibacterial properties.
View Article and Find Full Text PDFAcute myeloid leukaemia (AML) is a fatal haematopoietic malignancy and is treated with the conventional combination of cytarabine (Ara-C) and daunorubicin (Dau). The survival rate of AML patients is lower due to the cardiotoxicity of daunorubicin. Clinically, homoharringtonine (HHT) plus Ara-C has been reported to be equally effective as Dau plus Ara-C in some types of AML patients with less toxic effects.
View Article and Find Full Text PDFRecently, injectable dual-crosslinked (DC) hydrogel scaffolds have attracted many attentions as a class of excellent bone regeneration biomaterials with in-situ tunable functions. However, the design of injectable DC hydrogels with cell behavior-compatible network structure and mechanical property remains a bottleneck. Herein, based on the in-situ gelling method, we constructed an injectable CMCS/PEG+SA/CaCl (CPSC) chemical/physical DC hydrogel scaffold with tunable softness/hardness mechanical properties and good biocompatibility.
View Article and Find Full Text PDFThe hyperinflammation microenvironment after spinal cord injury (SCI) remains a great challenge for neural regeneration. Methylprednisolone has been used to reduce the inflammatory response after SCI, but it is controversial due to side effects associated with off-specific targeting effects. In this study, we synthesized in situ 5-ASA grafted chitosan electrospun fibers (ASA-EF) with excellent injectable and self-healing properties to reprogram nerve cells via displaying biological distribution, gene expression, and functional changes.
View Article and Find Full Text PDFInt Immunopharmacol
January 2023
Microglia, immune cells in the central nervous system (CNS), mediate inflammatory responses and provide support to the microenvironment. Neurotoxic microglia predominantly locate in the injured spinal cord that delay spinal cord injury (SCI) repair. We previously found that melatonin could suppress SCI-induced neuronal inflammatory activation.
View Article and Find Full Text PDFFluorine pollution has become a global public health problem due to its adverse health effects. Adsorption is the primary method for removing fluoride from drinking water. However, the adsorption method has disadvantages such as difficulty in recovering the adsorbent, and the need to add additional chemicals for regeneration, thereby causing secondary pollution, which limits further industrial applications.
View Article and Find Full Text PDFSpinal cord injuries (SCI) are complex and cause complex neurological disorders with serious implications for the health of society. Excessive neuroinflammation is one of the pathogenesis of trauma-related central nervous system (CNS) dysfunction. The initiation of inflammatory response mainly stems from neuronal necrosis in the central nervous system.
View Article and Find Full Text PDFLiver metastasis is the leading cause of death in colorectal carcinoma (CRC). However, little is known about the mechanisms of transferring effector messages between the primary tumor and the site of metastasis. Exosomes provide a novel transfer message method, and exosomal circular RNAs (circRNAs) play critical regulatory roles in cancer biology.
View Article and Find Full Text PDFObjectives: Osteoblasts are derived from Bone Marrow-derived Mesenchymal Stem Cells (BM-MSCs), which play an indispensable role in bone formation. In this study, the authors aim to investigate the role of IRF4 in the osteogenic differentiation of BM-MSCs and its potential molecular mechanism.
Methods: The authors used lentivirus infection to overexpress IRF4 in BM-MSCs.
Front Bioeng Biotechnol
January 2022
Spinal cord injury (SCI) is one of the most destructive diseases. The neuroinflammation microenvironment needs comprehensive mitigation of damages. Thus, regulation of local, microenvironment drugs could be a potential effective treatment.
View Article and Find Full Text PDFSpinal cord injury (SCI) can cause severe trauma to the central nervous system. Resveratrol has been widely studied for several of its medicinal properties, including anti-inflammatory, anti-aging and anti-oxidative effects. The regulation of SIRT-1 is thought to be related to the effects of resveratrol.
View Article and Find Full Text PDFFree Radic Biol Med
August 2021
Macrophages and microglia (M/Ms) in the injured spinal cord maintain a predominantly neurotoxic M1 phenotype that is disadvantageous to repair in the development of spinal cord injury (SCI). It has been reported that tumor necrosis factor (TNF) that polarize M/Ms toward M1 state in various disorders. In this study, we found that ablation of TNF endorsed the beneficial conversion from M1 to M2 phenotype and improved the mitochondrial metabolism in vivo and in vitro.
View Article and Find Full Text PDFObjectives: Resveratrol has been recognized as a potential therapeutic drug in spinal cord injury (SCI). Sirtuin 1 (SIRT1) is vital in the regulation of apoptosis and cell stress response. In this research, our purpose was to explore the mechanisms of resveratrol on neuroprotection and to explore the role of SIRT1.
View Article and Find Full Text PDFParthanatos is a form of regulated cell death (RCD) that is closely linked to DNA damage, which is a common consequence of oxidative stress due to central nervous trauma, such as spinal cord injury (SCI). The mechanism by which apoptosis-inducing factor (AIF) mediates DNA strand breaks in parthanatos was not clear until the discovery of the nuclease function of MIF. A previous study suggested that observed results may not be reliable if the oxidative stress induced in cells observed under experimental pathological conditions does not accurately replicate the specific pathologies being studied.
View Article and Find Full Text PDFThe microtubule-stabilizing drug epothilone B (epoB) has shown potential value in the treatment of spinal cord injury (SCI) through diverse mechanisms. However, it remains elusive why a limited overall effect was observed. We aim to investigate the limiting factors underlying functional recovery promoted by epoB.
View Article and Find Full Text PDFThe nuclear erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) signaling pathway plays an essential role in the cellular antioxidant and anti-inflammatory responses. Spinal cord injury (SCI) results in a massive release of inflammatory factors and free radicals, which seriously compromise nerve recovery and axon regeneration. In this study, we examined the efficacy of probucol on anti-inflammatory responses and functional recovery after SCI by activating the Nrf2/ARE signaling pathway.
View Article and Find Full Text PDFSpinal cord injury (SCI) is a devastating condition with few effective treatments. Resveratrol, a polyphenolic compound, has exhibited neuroprotective effects in many neurodegenerative diseases. However, the explicit effect and mechanism of resveratrol on SCI is still unclear.
View Article and Find Full Text PDFAutophagy is an process for the degradation of cytoplasmic aggregated proteins and damaged organelles and plays an important role in the development of SCI. In this study, we investigated the therapeutic effect of Netrin-1 and its potential mechanism for autophagy regulation after SCI. A rat model of SCI was established and used for analysis.
View Article and Find Full Text PDF