Publications by authors named "Haoqing Yang"

Background: Periodontal ligament stem cell (PDLSC)-based therapy is one of the methods to assist bone regeneration. Understanding the functional regulation of PDLSCs and the mechanisms involved is a crucial issue in bone regeneration. This study aimed to explore the roles of the family with sequence similarity 96 member B (FAM96B) in the functional regulation of PDLSCs.

View Article and Find Full Text PDF

Capsaicin is a polyphenol with a well-known anti-obesity potential, which could activate brown adipose tissue and promote the browning of white adipose tissue. Indeed, conventional proteomics have been used to investigate the browning effects of capsaicin on adipose tissue. However, the existence of a layer of white adipose tissue above the interscapular brown adipose tissue poses a great challenge to obtain intact interscapular brown adipose tissue without including adjacent white adipose tissue.

View Article and Find Full Text PDF

Periodontitis is an inflammation of the alveolar bone and soft tissue surrounding the teeth. Although mesenchymal stem cells (MSCs) have been implicated in periodontal regeneration, the mechanisms by which they promote osteogenesis remain unclear. We examined whether epigenetic modifications mediated by the long-noncoding RNA (lncRNA) NR_045147, which plays a crucial role in cancer, influence the osteogenic differentiation of periodontal ligament stem cells (PDLSCs).

View Article and Find Full Text PDF

Blood glucose fluctuation leads to poor bone defect repair in patients with type 2 diabetes (T2DM). Strategies to safely and efficiently improve the bone regeneration disorder caused by blood glucose fluctuation are still a challenge. Neutral sphingophospholipase 2 (Smpd3) is downregulated in jawbone-derived bone marrow mesenchymal stem cells (BMSCs) from T2DM patients.

View Article and Find Full Text PDF

The mechanical interactions among integrated cellular structures in soft tissues dictate the mechanical behaviors and morphogenetic deformations observed in living organisms. However, replicating these multifaceted attributes in synthetic soft materials remains a challenge. In this work, we develop a smart hydrogel system featuring engineered stiff cellular patterns that induce strain-driven heterogeneous subdomains within the hydrogel film.

View Article and Find Full Text PDF

Background: Influence on stem cells' angiogenesis and osteogenesis of NAD(P)H Quinone Dehydrogenase 1(NQO1) has been established, but its impact on dental pulp stem cells (DPSCs) is unexplored. An important strategy for the treatment of arteriosclerosis is to inhibit calcium deposition and to promote vascular repair and angiogenesis. This study investigated the function and mechanism of NQO1 on angiogenesis and osteogenesis of DPSCs, so as to provide a new ideal for the treatment of arteriosclerosis.

View Article and Find Full Text PDF

Angiogenesis is the determining factor during dental pulp regeneration. Six-twelve leukemia (STL) is identified as a key regulatory factor on the biological function of dental pulp stem cells (DPSCs) under hypoxic conditions, but its effect on angiogenesis is unclear. Co-culture of DPSCs and human umbilical vein endothelial cells (HUVECs) is used to detect tubule formation ability in vitro and the angiogenesis ability in vivo.

View Article and Find Full Text PDF

Senescent pre-osteoblasts have a reduced ability to differentiate, which leads to a reduction in bone formation. It is critical to identify the keys that regulate the differentiation fate of senescent pre-osteoblasts. LINC01013 has an essential role in cell stemness, differentiation, and senescence regulation.

View Article and Find Full Text PDF

To investigate the role and mechanism of FBLN1 in the osteogenic differentiation and bone regeneration by using umbilical cord mesenchymal stem cells (WJCMSCs). We found that FBLN1 promoted osteogenic differentiation of WJCMSCs and WJCMSC-mediated bone regeneration. It was showed that there was an mA methylation site in 3'UTR of FBLN1 mRNA, and the mutation of the mA site enhanced the stability of FBLN1 mRNA, subsequently fostering the FBLN1 enhanced osteogenic differentiation of WJCMSCs.

View Article and Find Full Text PDF

Kish graphite is a typical byproduct of steel production, and its enrichment and purification are essential prerequisites for its high value and comprehensive utilization. To solve the problem of recovery and application of difficult-to-treat kish graphite with a small particle size obtained from metallurgical dust, kish graphite in blast furnace tapping yard dust was effectively enriched and purified by a comprehensive flotation-acid leaching treatment process in this study. The influence of the flotation agents on the flotation process was explored.

View Article and Find Full Text PDF

With WHO announcing COVID-19 no longer as a public health emergency of international concern (PHEIC) on May 5, 2023, coupled with the fact that the majority of the countries of the world have dropped strict city lockdown or border closure, this perhaps signals the end of the COVID-19 crisis caused by the SARS-CoV-2 virus. However, the COVID-19 pandemic has resulted in far-reaching effects affecting nearly every aspect of our lives and society. Notably, the food industry including agriculture, food manufacturers, food logistics, distributors and retailers have all felt the profound impact and had experienced significant stress during the pandemic.

View Article and Find Full Text PDF

Objectives: Periodontal ligament stem cells (PDLSCs) are ideal seed cells for periodontal tissue regeneration. Our previous studies have indicated that the histone methyltransferase PRDM9 plays an important role in human periodontal ligament stem cells (hPDLSCs). Whether FBLN5, which is a downstream gene of PRDM9, also has a potential impact on hPDLSCs is still unclear.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) have been considered a potential method for the regeneration of tooth and maxillofacial bone defects based on the multidirectional differentiation characteristics of MSCs. miRNAs have been found to play a key role in the differentiation of MSCs. However, its effectiveness still needs to be improved, and its internal mechanism is still unclear.

View Article and Find Full Text PDF

Foodborne diseases caused by foodborne pathogens pose risks to food safety. Effective detection and efficient inactivation of pathogenic bacteria has always been a research hotspot in the field of food safety. Complicating these goals, bacteria can be induced to adopt a viable but non-culturable (VBNC) state under adverse external environmental stresses.

View Article and Find Full Text PDF

Objectives: Stem cells of the apical papilla (SCAPs) provide promising candidates for dental pulp regeneration. Despite great advances in the transcriptional controls of the SCAPs fate, little is known about the regulation of SCAP differentiation.

Materials And Methods: Short hairpin RNAs and full-length RNA were used to deplete or overexpress lysine demethylase 4D (KDM4D) gene expression.

View Article and Find Full Text PDF

Evidences have showed stem cell mediated tissue regeneration is a promising method for the treatment of periodontitis. Insulin-like growth factor binding proteins-5 (IGFBP5) is a member of the insulin growth factor (IGFs) family and plays a regulatory role in cell proliferation and differentiation. Our previous study showed that IGFBP5 can promote osteogenic differentiation of periodontal ligament stem cells (PDLSCs) and enhance periodontal tissue regeneration mediated by PDLSCs.

View Article and Find Full Text PDF

The peri-tooth root alveolar loss often does not have sufficient space for repair material transplantation and plasticity. Mesenchymal stem cell (MSC) sheets have an advantage in providing more extracellular matrix (ECM) and may prove to be a new therapeutic consideration for this bone defect repair. The identification of key regulators that stimulate MSCs' osteogenic potential and sheet-derived ECM deposition is the key to promoting its application.

View Article and Find Full Text PDF

Microbial-induced struvite precipitation (MISP) is a new biocementation method for soil improvement and hydraulic permeability reduction. Compared with traditional microbial-induced carbonate precipitation (MICP), MISP can significantly reduce the production of harmful ammonium ions during biochemical reactions and convert ammonium ions into struvite with promising mechanical strength. In this study, a series of experiments were conducted to compare the performance of the MICP and the MISP processes on sandy soils.

View Article and Find Full Text PDF

Tooth loss and maxillofacial bone defect are common diseases, which seriously affect people's health. Effective tooth and maxillofacial bone tissue regeneration is a key problem that need to be solved. In the present study, we investigate the role of PRMT6 in osteo/odontogenic differentiation and migration capacity by using SCAPs.

View Article and Find Full Text PDF

Tooth tissue regeneration mediated by mesenchymal stem cells (MSCs) has become the most ideal treatment. Although the known regulatory mechanism and some achievements have been discovered, directional differentiation cannot effectively induce regeneration of tooth tissue. In this study, we intended to explore the function and mechanism of miR-6807-5p and its target gene METTL7A in odontogenic differentiation.

View Article and Find Full Text PDF

Alveolar bone remodeling under orthodontic force is achieved by periodontal ligament stem cells (PDLSCs), which are sensitive to mechanical loading. How to regulate functions of PDLSCs is a key issue in bone remodeling during orthodontic tooth movement. This study is aimed at investigating the roles of lncRNA Hedgehog-interacting protein antisense RNA 1 (HHIP-AS1) in the functional regulation of PDLSCs.

View Article and Find Full Text PDF

Background: Epiregulin (EREG) is an important component of EGF and was demonstrated to promote the osteo/dentinogenic differentiation of stem cells from dental apical papilla (SCAPs). Whether EREG can stimulate the osteo/dentinogenic differentiation of dental pulp stem cells (DPSCs) in inflammatory environment is not clear. The purpose of the present study is to investigate the role of EREG on the osteo/dentinogenic differentiation ability of DPSCs in inflammatory environment.

View Article and Find Full Text PDF

N-staging is a determining factor for prognostic assessment and decision-making for stage-based cancer therapeutic strategies. Visual inspection of whole-slides of intact lymph nodes is currently the main method used by pathologists to calculate the number of metastatic lymph nodes (MLNs). Moreover, even at the same N stage, the outcome of patients varies dramatically.

View Article and Find Full Text PDF

Bone regeneration and remodeling are complex physiological processes that are regulated by key transcription factors. Understanding the regulatory mechanism of key transcription factors on the osteogenic differentiation of mesenchymal stem cells (MSCs) is a key issue for successful bone regeneration and remodeling. In the present study, we investigated the regulatory mechanism of the histone deacetylase Sirtuin 7 (SIRT7) on the key transcription factor OSX and osteogenesis of MSCs.

View Article and Find Full Text PDF

Human umbilical cord mesenchymal stem cells can be obtained from different parts of the umbilical cord, including Wharton's jelly. Transplantation of Wharton's jelly umbilical cord stem cells (WJCMSCs) is a promising strategy for the treatment of various diseases. However, the molecular mechanisms underlying the proliferation of WJCMSCs are incompletely understood.

View Article and Find Full Text PDF