Publications by authors named "Haoqiang Feng"

Lithography technology is a powerful tool for preparing complex microstructures through projecting patterns from static templates with permanent features onto samples. To simplify fabrication and alignment processes, dynamic photomask for multiple configurations preparation becomes increasingly noteworthy. Hereby, we report a dynamic photomask by assembling the electrically stimulated nematic liquid crystal (NLC) into multifarious architectures.

View Article and Find Full Text PDF

The assembly of colloidal particles into micro-patterns is essential in optics, informatics, and microelectronics. However, it is still a challenge to achieve quick, reversible, and precise assembly patterns within micro-scale spaces like droplets. Hereby, a method is presented that utilizes in-plane dielectrophoresis to precisely manipulate particle assemblies within microscale droplets.

View Article and Find Full Text PDF

Reflective displays have stimulated considerable interest because of their friendly readability and low energy consumption. Herein, we develop a reflective display technique via an electro-microfluidic assembly of particles (eMAP) strategy whereby colored particles assemble into annular and planar structures inside a dyed water droplet to create "open" and "closed" states of a display pixel. Water-in-oil droplets are compressed within microwells to form a pixel array.

View Article and Find Full Text PDF

Droplet array is widely applied in single cell analysis, drug screening, protein crystallization, etc. This work proposes and validates a method for rapid formation of uniform droplet array based on microwell confined droplets electro-coalescence of screen-printed emulsion droplets, namely electro-coalescence droplet array (ECDA). The electro-coalescence of droplets is according to the polarization induced electrostatic and dielectrophoretic forces, and the dielectrowetting effect.

View Article and Find Full Text PDF

Electrowetting-on-dielectric (EWOD) technology has been considered as a promising candidate for digital microfluidic (DMF) applications due to its outstanding flexibility and integrability. The dielectric layer with a hydrophobic surface is the key element of an EWOD device, determining its driving voltage, reliability, and lifetime. Hereby, inspired by the ionic-liquid-filled structuring polymer with high capacitance independent on thickness, namely ion gel (IG), we develop a polymer (P)-ion gel-amorphous fluoropolymer, namely, PIGAF, composite film as a replaceable hydrophobic dielectric layer for fabrication of a high-efficiency and stable EWOD-DMF device at relatively low voltage.

View Article and Find Full Text PDF

Colloidal assembly is a key strategy in nature and artificial device. Hereby, an electromicrofluidic assembly platform (eMAP) is proposed and validated to achieve 3D colloidal assembly and manipulation within water droplets. The water-in-oil emulsion droplets autoposition in the eMAP driven by dielectrophoresis, where the (di)electrowetting effect induces droplet deformation, facilitating quadratic growth of the electric field in water droplet to achieve "far-field" dielectrophoretic colloidal assembly.

View Article and Find Full Text PDF

Insulin is a critical predictor for the function of pancreatic islet beta cells, which plays a crucial role in diagnosing diabetes and diabetes-related disorders. Herein, we propose and validate a label-free and cost-effective aptamer-based optical LC biosensor for detection of insulin based on the directional recognition of biomolecular binding events at a responsive aqueous-liquid crystal (LC) interface. The binding of insulin and aptamer adsorbed on CTAB triggers a conformational change of the aptamer from G-quadruplex to stretched structure, inducing homeotropic to planar alignment and correspondingly dark to bright optical image change of the LC films.

View Article and Find Full Text PDF

Three-color electrophoretic displays (EPDs) have the advantages of multi-color display and low power consumption. However, their red particles have the disadvantage of long response time. In this paper, a driving waveform, which is based on electrophoresis theory and reference gray scale optimization, was proposed to shorten the response time of red particles in three-color EPDs.

View Article and Find Full Text PDF

At present, three-color electrophoretic displays (EPDs) have problems of dim brightness and insufficient color saturation. In this paper, a driving waveform based on a damping oscillation was proposed to optimize the red saturation in three-color EPDs. The optimized driving waveform was composed of an erasing stage, a particles activation stage, a red electrophoretic particles purification stage, and a red display stage.

View Article and Find Full Text PDF

As a laboratory-on-a-chip application tool, digital microfluidics (DMF) technology is widely used in DNA-based applications, clinical diagnosis, chemical synthesis, and other fields. Additional components (such as heaters, centrifuges, mixers, etc.) are required in practical applications on DMF devices.

View Article and Find Full Text PDF

Constructing a p-n heterojunction has been regarded as an effective way to restrain charge recombination and boost photocatalytic H2 production activity. Herein, a novel Mn0.2Cd0.

View Article and Find Full Text PDF