We experimentally demonstrate a 10-Gbit/s free-space communication link using a single Laguerre-Gaussian (LG) beam with tunable radial and azimuthal modal indices generated by a photonic integrated circuit comprising two concentric uniform circular antenna arrays (UCAs). To tune the azimuthal modal indices ℓ of the generated beam, the azimuthal phase gradient inside each UCA is tuned. To tune the radial mode p of the generated beam, the amplitude ratio and phase difference between the two concentric UCA are tuned.
View Article and Find Full Text PDFThis publisher's note contains a correction to Opt. Lett.48, 6452 (2023)10.
View Article and Find Full Text PDFIn general, atmospheric turbulence can degrade the performance of free-space optical (FSO) communication systems by coupling light from one spatial mode to other modes. In this Letter, we experimentally demonstrate a 400 Gbit/s quadrature-phase-shift-keyed (QPSK) FSO mode-division-multiplexing (MDM) coherent communication link through emulated turbulence using four Laguerre Gaussian (LG) modes with different radial and azimuthal indices ( , , , and ). To mitigate turbulence-induced channel cross talk and power loss, we implement an adaptive optics (AO) system at the receiver end.
View Article and Find Full Text PDFPreviously, space-time wave packets (STWPs) have been generated in free space with reduced diffraction and a tunable group velocity by combining multiple frequency comb lines each carrying a single Bessel mode with a unique wave number. It might be potentially desirable to propagate the STWP through fiber for reconfigurable positioning. However, fiber mode coupling might degrade the output STWP and distort its propagation characteristics.
View Article and Find Full Text PDFAtmospheric turbulence can cause critical problems in many applications. To effectively avoid or mitigate turbulence, knowledge of turbulence strength at various distances could be of immense value. Due to light-matter interaction, optical beams can probe longitudinal turbulence changes.
View Article and Find Full Text PDFWe experimentally demonstrate a 4-Gbit/s 16-QAM pilot-assisted, self-coherent, and turbulence-resilient free-space optical link using a photodetector (PD) array. The turbulence resilience is enabled by the efficient optoelectronic mixing of the data and pilot beams in a free-space-coupled receiver, which can automatically compensate for turbulence-induced modal coupling to recover the data's amplitude and phase. For this approach, a sufficient PD area might be needed to collect the beams while the bandwidth of a single larger PD could be limited.
View Article and Find Full Text PDFThere are various performance advantages when using temporal phase-based data encoding and coherent detection with a local oscillator (LO) in free-space optical (FSO) links. However, atmospheric turbulence can cause power coupling from the Gaussian mode of the data beam to higher-order modes, resulting in significantly degraded mixing efficiency between the data beam and a Gaussian LO. Photorefractive crystal-based self-pumped phase conjugation has been previously demonstrated to "automatically" mitigate turbulence with limited-rate free-space-coupled data modulation (e.
View Article and Find Full Text PDFDue to its absorption properties in atmosphere, the mid-infrared (mid-IR) region has gained interest for its potential to provide high data capacity in free-space optical (FSO) communications. Here, we experimentally demonstrate wavelength-division-multiplexing (WDM) and mode-division-multiplexing (MDM) in a ~0.5 m mid-IR FSO link.
View Article and Find Full Text PDFStructured electromagnetic (EM) waves have been explored in various frequency regimes to enhance the capacity of communication systems by multiplexing multiple co-propagating beams with mutually orthogonal spatial modal structures (i.e., mode-division multiplexing).
View Article and Find Full Text PDFNovel forms of light beams carrying orbital angular momentum (OAM) have recently gained interest, especially due to some of their intriguing propagation features. Here, we experimentally demonstrate the generation of near-diffraction-free two-dimensional (2D) space-time (ST) OAM wave packets (ℓ = +1, +2, or +3) with variable group velocities in free space by coherently combining multiple frequency comb lines, each carrying a unique Bessel mode. Introducing a controllable specific correlation between temporal frequencies and spatial frequencies of these Bessel modes, we experimentally generate and detect near-diffraction-free OAM wave packets with high mode purities (>86%).
View Article and Find Full Text PDFThe channel capacity of terahertz (THz) wireless communications can be increased by multiplexing multiple orthogonal data-carrying orbital-angular-momentum (OAM) beams. In THz links using OAM multiplexing (e.g.
View Article and Find Full Text PDFWe experimentally demonstrate turbulence mitigation in a 200-Gbit/s quadrature phase-shift keying (QPSK) orbital-angular-momentum (OAM) mode-multiplexed system using simple power measurements for determining the modal coupling matrix. To probe and mitigate turbulence, we perform the following: (i) sequentially transmit multiple probe beams at 1550-nm wavelength each with a different combination of Laguerre-Gaussian (LG) modes; (ii) detect the power coupling of each probe beam to LG for determining the complex modal coupling matrix; (iii) calculate the conjugate phase of turbulence-induced spatial phase distortion; (iv) apply this conjugate phase to a spatial light modulator (SLM) at the receiver to mitigate the turbulence distortion for the 1552-nm mode-multiplexed data-carrying beams. The probe wavelength is close enough to the data wavelength such that it experiences similar turbulence, but is far enough away such that the probe beams do not affect the data beams and can all operate simultaneously.
View Article and Find Full Text PDFBrain-machine interface (BMI) can realize information interaction between the brain and external devices, and yet the control accuracy is limited by the change of electroencephalogram signals. The introduction of auxiliary controller can overcome the above problems, but the performance of different auxiliary controllers is quite different. Hence, in this paper, we comprehensively compare and analyze the performance of different auxiliary controllers to provide a theoretical basis for designing BMI system.
View Article and Find Full Text PDFWe experimentally generate an orbital-angular-momentum (OAM) beam with a tunable mode order over a range of wavelengths utilizing an integrated broadband pixel-array OAM emitter. The emitter is composed of a 3-to-4 coupler, four phase controllers, and a mode convertor. An optical input is split into four waveguides by the coupler.
View Article and Find Full Text PDFWe investigate the modal properties of a beam carrying orbital angular momentum (OAM) generated by a circular array (ring) of multiple micro-ring emitters (rings) analytically and via simulation. In such a "ring-of-rings" structure, emitters generate optical vortex beams with the same OAM-order at the same wavelength. The output beam is a coherent combination of the vortex beams located at different azimuthal positions, having the same radial displacement.
View Article and Find Full Text PDFOptical pulses carrying orbital angular momentum (OAM) have recently gained interest. In general, it might be beneficial to simultaneously achieve: (i) minimum diffraction, (ii) minimum dispersion, and (iii) controllable group velocity. Here, we explore via simulation the generation of near-diffraction-free and near-dispersion-free OAM pulses with arbitrary group velocities by coherently combining multiple frequencies.
View Article and Find Full Text PDFWe experimentally investigate the tunable Doppler shift in an 80 nm thick indium-tin-oxide (ITO) film at its epsilon-near-zero (ENZ) region. Under strong and pulsed excitation, ITO exhibits a time-varying change in the refractive index. A maximum frequency redshift of 1.
View Article and Find Full Text PDFA time-dependent change in the refractive index of a material leads to a change in the frequency of an optical beam passing through that medium. Here, we experimentally demonstrate that this effect-known as adiabatic frequency conversion (AFC)-can be significantly enhanced by a nonlinear epsilon-near-zero-based (ENZ-based) plasmonic metasurface. Specifically, by using a 63-nm-thick metasurface, we demonstrate a large, tunable, and broadband frequency shift of up to ∼11.
View Article and Find Full Text PDFOrbital-angular-momentum (OAM) multiplexing has been utilized to increase the channel capacity in both millimeter-wave and optical domains. Terahertz (THz) wireless communication is attracting increasing attention due to its broadband spectral resources. Thus, it might be valuable to explore the system performance of THz OAM links to further increase the channel capacity.
View Article and Find Full Text PDFIn this paper, we experimentally demonstrate an approach that "hides" a low-intensity 50 Gbit/s quadrature-phase-keying (QPSK) free-space optical beam when it coaxially propagates on the same wavelength with an orthogonal high-intensity 50 Gbit/s QPSK optical beam. Our approach is to coaxially transmit the strong and weak beams carrying different orthogonal spatial modes within a modal basis set, e.g.
View Article and Find Full Text PDFWe experimentally demonstrate the use of orbital angular momentum (OAM) modes as a degree of freedom to facilitate the networking functions of carrying header information and orthogonal channel coding. First, for carrying channel header information, we transmit a 10 Gb/s on-off keying (OOK) data channel as a Gaussian beam and add to it a 10 Mb/s OOK header carried by an OAM beam with the mode order =3. We recover the header and use it to drive a switch and select the output port.
View Article and Find Full Text PDFNovel forms of beam generation and propagation based on orbital angular momentum (OAM) have recently gained significant interest. In terms of changes in time, OAM can be manifest at a given distance in different forms, including: (1) a Gaussian-like beam dot that revolves around a central axis, and (2) a Laguerre-Gaussian ([Formula: see text]) beam with a helical phasefront rotating around its own beam center. Here we explore the generation of dynamic spatiotemporal beams that combine these two forms of orbital-angular-momenta by coherently adding multiple frequency comb lines.
View Article and Find Full Text PDF