Publications by authors named "Haoqi Yang"

Anisotropic composite valves that approximate natural heart valves are essential for the successful construction of tissue-engineered heart valves. In this work, anisotropic nylon (polyamides, PA) fiber membranes were prepared electrospinning and further composited with thermoplastic polyurethane (TPU) by the impregnation method to obtain anisotropic PA/TPU composite valves. Young's modulus of the PA/TPU composite valves in the axial and radial directions along the fibers was 85.

View Article and Find Full Text PDF

Supercapacitors are garnering considerable interest owing to their high-power density, rapid charge-discharge capability, and long cycle life. Among the various materials explored, biomass-derived carbon nanomaterials stands out as a sustainable and cost-effective choice, thanks to its natural abundance and eco-friendly characteristics. This review delineates recent advances in the synthesis of zero-dimensional (0D) carbon nanomateirlas from various biomass precursors via hydrothermal assisted synthesis.

View Article and Find Full Text PDF

Suboptimal spatial utilization and inefficient access to internal porosity preclude porous carbon cathodes from delivering high energy density in zinc-ion hybrid capacitors (ZIHCs). Inspired by the function of capillaries in biological systems, this study proposes a facile coordination-pyrolysis method to fabricate thin-walled hollow carbon nanofibers (CNFs) with optimized pore structure and surface functional groups for ZIHCs. The capillary-like CNFs maximize the electrode/electrolyte interface area, facilitating the optimal utilization of energy storage sites.

View Article and Find Full Text PDF

We present a novel DNA molecular machine (RCA-D-Walker) that integrates a DNAzyme-based molecular beacon with RCA-based vectors for miRNA imaging in tumor cells. It can accurately target tumor cells through the sgc8 aptamer. The target miRNA can restore the DNAzyme's ability to cleave the substrate, which in turn produces an amplified fluorescent signal.

View Article and Find Full Text PDF
Article Synopsis
  • - Developing efficient catalysts for the hydrogen evolution reaction (HER) in seawater electrolysis is key for producing green hydrogen, and carbonized wood (CW) is a promising material due to its sustainable and porous properties.
  • - This study compares the electrocatalytic performance of various types of CW, including carbonized poplar, balsa, fir, and pine, with carbonized poplar demonstrating the best performance due to its larger electrochemically active surface area and functional groups.
  • - The carbonized poplar (PoCW) shows a low overpotential in both alkaline freshwater and seawater and maintains durability over 100 hours, highlighting the potential of metal-free, CW-based electrodes for effective hydrogen production.
View Article and Find Full Text PDF

Nanocellulose aerogels are usually produced by methods such as freeze-drying or critical point drying, which have the disadvantages of high equipment requirements and high energy consumption. In this study, the Fe-containing ethanol bath was employed to dissolve and replace ice crystals in the prefrozen precursors of cellulose-based aerogels. The method achieved both solvent substitution and metal ion complexation and successfully prepared nanocellulose aerogels with a total solid concentration of 2.

View Article and Find Full Text PDF

Sensitive imaging of microRNAs (miRNAs) in tumor cells holds great significance in the domains of pathology, drug development, and personalized diagnosis and treatment. DNA nanostructures possess excellent biostability and programmability and are suitable as carriers for intracellular imaging probes. With its highly controllable motion mechanism and remarkable target recognition specificity, the DNA walker is an ideal tool for living cell imaging.

View Article and Find Full Text PDF
Article Synopsis
  • The Qinghai-Tibet Plateau, known as the "roof of the world," has a unique environment that makes it easier to study ecological risks because of its tough conditions and sparse population.
  • Researchers studied the Bardawu region in Qinghai Province using soil samples to measure heavy metals and assess the land's environmental health.
  • The study found that some areas had good soil quality, while others were at risk of contamination, and it highlighted the need for better management strategies for the soil in the region.
View Article and Find Full Text PDF

The incompatibility between electrolyte ions and electrode pore sizes, coupled with the extensive use of activators and dopants, significantly restricts the fabrication of porous carbon materials. Consequently, developing environmentally sustainable and efficient methodologies that exploit the intrinsic properties and pretreatment of materials to facilitate self-activation and self-doping becomes crucial. In this study, potassium histidine and magnesium histidine molecular salts were synthesized as precursors, enabling specific ion activation and bimetallic template-directed tunable porosity through a one-step carbonization process.

View Article and Find Full Text PDF
Article Synopsis
  • - Biomass and its derivatives can create renewable and cost-effective carbon materials, specifically N,O-codoped carbon aerogels, through a synthesis process involving carbonization and zinc nitrate activation of histidine.
  • - The study found that adding zinc nitrate significantly increased the specific surface area of the carbon aerogels, achieving a maximum of 853 m²/g, which improved their structural properties and nitrogen content.
  • - The optimized carbon electrodes exhibited impressive capacitance performance in supercapacitors, achieving up to 234.1 F/g, demonstrating the effectiveness of using biomass derivatives for advanced energy storage applications.
View Article and Find Full Text PDF

A green and economical methodology to fabricate carbon-based materials with suitable pore size distributions is needed to achieve rapid electrolyte diffusion and improve the performance of supercapacitors. Here, a method combining templates with self-activation and self-doping is proposed. By variation of the molar ratio of magnesium folate and potassium folate, the pore size distribution was effectively adjusted.

View Article and Find Full Text PDF

The preparation of porous carbon is constrained by the extensive use and detrimental impact of activators and dopants. Therefore, developing green and efficient strategies that leverage the intrinsic properties and pretreatment of the materials to achieve self-activation and self-doping is particularly crucial for porous carbon materials. Herein, potassium histidine was utilized as the molecular salt precursor, attaining the efficient and streamlined preparation of porous carbon through a one-step carbonization process that enables self-activation, self-doping, and self-templating.

View Article and Find Full Text PDF

Here, an unusual MXene with a high ratio of oxygen functional groups was prepared by hydrothermal treatment of HF-etched MXene in aqueous KOH solution. The prepared MXene (H-220) exhibits ultrahigh specific capacitance (1030 F g in a potential window of 0.85 V), and excellent rate and cycling performance simultaneously in a sulfuric acid electrolyte, and can act as an anode material of proton batteries.

View Article and Find Full Text PDF

DNA nanostructures are easy to design and construct, have good biocompatibility, and show great potential in biosensing and drug delivery. Numerous distinctive and versatile DNA nanostructures have been developed and explored for biomedical applications. In addition to DNA nanostructures that are completely assembled from DNA, composite DNA nanostructures obtained by combining DNA with other organic or inorganic materials are also widely used in related research.

View Article and Find Full Text PDF

Transition metal and nitrogen co-doped carbon electrocatalysts are promising candidates to replace the precious metal platinum (Pt) in oxygen reduction reactions (ORR). Unfortunately, the electrochemical performance of existing electrocatalysts is restricted due to limited accessibility of active sites. Inspired by jellyfish tentacles, we design an efficient ORR micro-reactor called Fe-N/HC@NWs.

View Article and Find Full Text PDF

Background: As a therapy to prevent and treat hypertension, exercise is widely used in clinical practice. But due to the lack of documentary evidence, Baduanjin as a relaxed and convenient mode of exercise is not currently recommended by professional health organizations to treat hypertension. The purpose of this article is to examine the efficacy of Baduanjin as an antihypertensive exercise therapy.

View Article and Find Full Text PDF

Alveolar macrophages (AMs) are critical mediators of pulmonary inflammation. Given the unique lung tissue environment, whether there exist AM-specific mechanisms that control inflammation is not known. Here, we found that among various tissue-resident macrophage populations, AMs specifically expressed , encoding receptor for a key metabolic hormone leptin.

View Article and Find Full Text PDF

Water pollution is a global challenge endangering people's health. In this work, an ultra-efficient photodegradation system of Rhodamine B (RhB) has been established using a graphitic carbon nitride nanosheet (CNNS) as the semiconductor photocatalyst, from which energy is harvested on both the conduction band and valence band by formic acid and hydrogen peroxide, respectively. The optimized FA/HO/CNNS system increases the apparent photodegradation rate of RhB by 25 folds, from 0.

View Article and Find Full Text PDF

The Fenton-like reaction has great potential in water treatment. Herein, an efficient and reusable catalytic system is developed based on atomically dispersed Fe catalyst by anchoring Fe atoms on nitrogen-doped porous carbon (Fe SA/NPCs). The catalyst of Fe SA/NPCs exhibits enhanced performance in activating peroxymonosulfate (PMS) for organic pollutant degradation and bacterial inactivation.

View Article and Find Full Text PDF

Designing intertwined porous structure is highly desirable to improve the electrochemical performance of carbon materials for supercapacitor. In this contribution, three-dimensional (3D) carbonized polyimide/cellulose (CPC) composite is fabricated via a facile "one-step" carbonization, in which cellulose as cross-linked agent is capable of modulating the molecular structure of polyamic acid, thus ensuring the formation of intertwined porous networks in the obtained carbon skeleton. Benefitting from the high specific surface area (951 m g) and uniformly distributed pores, the optimized CPC-5 electrode exhibits an outstanding specific capacitance of 300F g in 6.

View Article and Find Full Text PDF

For the proliferation of the supercapacitor technology, it is essential to attain superior areal and volumetric performance. Nevertheless, maintaining stable areal/volumetric capacitance and rate capability, especially for thick electrodes, remains a fundamental challenge. Here, for the first time, a rationally designed porous monolithic electrode is reported with high thickness of 800 µm (46.

View Article and Find Full Text PDF

Rational design of electrode with hierarchical charge-transfer structure and good electronic conductivity is important to achieve high specific capacitance and energy density for supercapacitor, but it still remains a challenge. Herein, a nitrogen, sulfur co-doped pollen-derived carbon/graphene (PCG) composite with interconnected "sphere-in-layer" structure was fabricated, in which hierarchically pollen-derived carbon microspheres can serve as "porous spacers" to prevent the agglomeration of graphene nanosheets. The optimized PCG composite prepared with 0.

View Article and Find Full Text PDF

Oxygen reduction reaction (ORR) electrocatalysts derived from biomass have become one of the research focuses in hetero-catalysis due to their low cost, high performance, and reproducibility properties. Related researches are of great significance for the development of next-generation fuel cells and metal-air batteries. Herein, the preparation methods of various biomass-derived catalysts and their performance in alkaline, neutral, and acidic media are summarized.

View Article and Find Full Text PDF

Electrospinning is an effective and versatile method to prepare continuous polymer nanofibers and nonwovens that exhibit excellent properties such as high molecular orientation, high porosity and large specific surface area. Benefitting from these outstanding and intriguing features, electrospun nanofibers have been employed as a promising candidate for the fabrication of food packaging materials. Actually, the electrospun nanofibers used in food packaging must possess biocompatibility and low toxicity.

View Article and Find Full Text PDF

Development of efficient metal-free electrocatalysts derived from biomass with high activity towards oxygen reduction reaction (ORR) has gained significance attention due to their low manufacturing cost, environmental friendliness and easy large-scale production. Hence, we present a facile method to prepare nitrogen-self-doped carbon aerogels (NSCAs) with a three-dimensional (3D) interconnected porous structure and large surface area. The sample is prepared high-temperature pyrolysis using gelatin as precursor and sodium chloride (NaCl) as sacrificial template.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session35pussogsathm2nqjo0ip0gcqh9mttl3): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once