Publications by authors named "Haoqi Shi"

Bacterial wilt severely jeopardizes plant growth and causes enormous economic loss in the production of many crops, including tobacco (Nicotiana tabacum). Here, we first demonstrated that the roots of bacterial wilt-resistant tobacco mutant KCB-1 can limit the growth and reproduction of Ralstonia solanacearum. Secondly, we demonstrated that KCB-1 specifically induced an upregulation of naringenin content in root metabolites and root secretions.

View Article and Find Full Text PDF

Plants respond to infestation through two layers of immune system (PTI and ETI). This process involves the production of plant-induced resistance. Strategies for inducing resistance in plants include the formation of tyloses, gels, and callose and changes in the content of cell wall components such as cellulose, hemicellulose, pectin, lignin, and suberin in response to pathogen infestation.

View Article and Find Full Text PDF

The more axillary growth () gene family is a group of key genes involved in the synthesis and signal transduction of strigolactones (SLs) in plants. Although genes play vital roles in plant growth and development, characterization of the gene family has been limited in solanaceous crops, especially in tobacco. In this study, 74 members of the family were identified in representative crops and classified into four groups.

View Article and Find Full Text PDF

Tobacco bacterial wilt has seriously affected tobacco production. Ethyl methanesulfonate (EMS) induced tobacco bacterial wilt resistant mutants are important for the control of tobacco bacterial wilt. High-throughput sequencing technology was used to study the rhizosphere bacterial community assemblages of bacterial wilt resistant mutant tobacco rhizosphere soil (namely KS), bacterial wilt susceptible tobacco rhizosphere soil (namely GS) and bulk soil (namely BS) in Xuancheng, Huanxi, Yibin and Luzhou.

View Article and Find Full Text PDF

Ralstonia solanacearum severely damages the growth of tobacco (Nicotiana tabacum L.) and causes great economic losses in tobacco production. To investigate the root metabolism and transcriptional characteristics of tobacco bacterial wilt susceptible variety Cuibi-1 (CB-1) and resistant new line KCB-1 (derived from an ethyl methanesulfonate (EMS) mutant of CB-1) after infestation with R.

View Article and Find Full Text PDF