Publications by authors named "Haoqi Gao"

Metalens can achieve arbitrary light modulation by controlling the amplitude, phase, and polarization of the incident waves and have been applied across various fields. This paper presents a color router designed based on metalens, capable of effectively separating spectra from visible light to near-infrared light. Traditional design methods for meta-lenses require extensive simulations, making them time-consuming.

View Article and Find Full Text PDF

Environmental assessments are critical for ensuring the sustainable development of human civilization. The integration of artificial intelligence (AI) in these assessments has shown great promise, yet the "black box" nature of AI models often undermines trust due to the lack of transparency in their decision-making processes, even when these models demonstrate high accuracy. To address this challenge, we evaluated the performance of a transformer model against other AI approaches, utilizing extensive multivariate and spatiotemporal environmental datasets encompassing both natural and anthropogenic indicators.

View Article and Find Full Text PDF

The malignancy risk differentiation of pulmonary nodule is one of the most challenge tasks of computer-aided diagnosis (CADx). Most recently reported CADx methods or schemes based on texture and shape estimation have shown relatively satisfactory on differentiating the risk level of malignancy among the nodules detected in lung cancer screening. However, the existing CADx schemes tend to detect and analyze characteristics of pulmonary nodules from a statistical perspective according to local features only.

View Article and Find Full Text PDF

Boron and nitrogen codoped hollow graphene microspheres (NBGHSs), synthesized from a simple template sacrificing method, have been employed as an electrocatalyst for the oxygen reduction reaction (ORR). Because of their specific hollow structure that consists of boron and nitrogen codoped graphene, the NBGHSs can exhibit even high electrocatalytic activity toward ORR than the commercial JM Pt/C 40 wt %. This, along with their higher stability, makes the NBGHSs particularly attractive as the electrocatalyst for the ORR with great potential to replace the commonly used noble-metal-based catalysts.

View Article and Find Full Text PDF

In this work, an ampholine-functionalized hybrid organic-inorganic silica sorbent was successfully used to extract melamine from a milk formula sample by a hydrophilic interaction solid-phase extraction protocol. Primary factors affecting the extraction efficiency of the material such as extraction solvent, elution solvent, sample loading volume, and elution volume have been thoroughly optimized. Under the optimized hydrophilic solid-phase extraction conditions, the recoveries of melamine spiked in milk formula samples ranged from 86.

View Article and Find Full Text PDF

A novel ionic liquid-modified organic-polymer monolithic capillary column was prepared and used for in-tube solid-phase microextraction (SPME) of acidic food additives. The primary amino group of 1-aminopropyl-3-methylimidazolium chloride was reacted with the epoxide group of glycidyl methacrylate. The as-prepared new monomer was then copolymerized in situ with acrylamide and N,N'-methylenebisacrylamide in the presence of polyethylene glycol (PEG)-8000 and PEG-10,000 as porogens.

View Article and Find Full Text PDF

An SPE cartridge based on an ampholine-functionalized hybrid organic-inorganic silica sorbent has been adopted for the analysis of aromatic amines including 4-aminobiphenyl, benzidine, 2-naphthylamine, p-chloroaniline, 2,4,5-trimethylaniline, and 3,3'-dichlorobenzidine. Crucial variables governing the extraction efficiency of the material such as the pH of sample, sample loading volume, solvent used for elution, and elution volume have been thoroughly optimized. The adsorption capacities for the six aromatic amines ranged from 0.

View Article and Find Full Text PDF

A novel sorbent for solid-phase extraction (SPE) was synthesized by chemical immobilization of ampholine on hybrid organic-inorganic silica material. The ampholine-functionalized hybrid organic-inorganic silica sorbent is consisted of aliphatic amine groups, carboxyl groups and long carbon chains, allowing for extraction of both acidic and basic compounds. The retention properties of the developed sorbent were evaluated for 1-hydroxy-2-naphthoic acid (HNA), 1-naphthoic acid (NA), 3-hydroxybenzoic acid (HBA), benzoic acid (BA), sorbic acid (SA), vanillic aldehyde (VA), butyl 4-hydroxybenzoate (BHB), propyl 4-hydroxybenzoate (PHB), ethyl 4-hydroxybenzoate (EHB), and methyl 4-hydroxybenzoate (MHB).

View Article and Find Full Text PDF

Novel N,N'-bisethoxyethane[12]amideferrocenophane has been synthesized by a condensation reaction and characterized by (1)H NMR and mass spectrum. The anion recognition properties of the compound are evaluated via (1)H NMR, FT-IR, and electrochemical measurement. It is found that N,N'-bisethoxyethane[12]amideferrocenophane exhibits remarkable electrochemical response to H(2)PO(4-) anion in CH(2)C(l2) or CH(3)CN solution, and response to anions can also be observed in CH(3)CN solution containing up to 15% water.

View Article and Find Full Text PDF