We performed a pump-probe experiment on the chiral magnet Cu_{2}OSeO_{3} to study the relaxation dynamics of its noncollinear magnetic orders, employing a millisecond magnetic field pulse as the pump and resonant elastic x-ray scattering as the probe. Our findings reveal that the system requires ∼0.2 s to stabilize after the perturbation applied to both the conical and skyrmion lattice phase, which is significantly slower than the typical nanosecond timescale observed in micromagnetics.
View Article and Find Full Text PDFMagnetic skyrmions are topologically protected spin textures with emergent particle-like behaviors. Their dynamics under external stimuli is of great interest and importance for topological physics and spintronics applications alike. So far, skyrmions are only found to move linearly in response to a linear drive, following the conventional model treating them as isolated quasiparticles.
View Article and Find Full Text PDFMagnetic skyrmions are swirl-like spin configurations that present topological properties, which have great potential as information carriers for future high-density and low-energy-consumption devices. The optimization of skyrmion-hosting materials that can be integrated with semiconductor-based circuits is the primary challenge for their industrialization. Two-dimensional van der Waals ferromagnets are emerging materials that have excellent carrier mobility and compatibility with integrated circuits, making them an ideal candidate for spintronic devices.
View Article and Find Full Text PDFAntiferromagnetic (AFM) skyrmions are magnetic vortices composed of antiparallell-aligned neighboring spins. In stark contrast to conventional skyrmions based on ferromagnetic order, AFM skyrmions have vanished stray fields, higher response frequencies, and rectified translational motion driven by an external force. Therefore, AFM skyrmions promise highly efficient spintronics devices with high bit mobility and density.
View Article and Find Full Text PDFSimultaneously generating various motion modes with high strains in piezoelectric devices is highly desired for high-technology fields to achieve multi-functionalities. However, traditional approach for designing multi-degrees-of-freedom systems is to bond together several multilayer piezoelectric stacks, which generally leads to cumbersome and complicated structures. Here, we proposed a transparent piezo metasurface to achieve various types of strains in a wide frequency range.
View Article and Find Full Text PDFIn recent years, there has been a growing interest in the study of emotion recognition through electroencephalogram (EEG) signals. One particular group of interest are individuals with hearing impairments, who may have a bias towards certain types of information when communicating with those in their environment. To address this, our study collected EEG signals from both hearing-impaired and non-hearing-impaired subjects while they viewed pictures of emotional faces for emotion recognition.
View Article and Find Full Text PDFTopological defects are fundamental concepts in physics, but little is known about the transition between distinct types across different dimensionalities. In topological magnetism, as in field theory, the transition between 1D strings and 0D monopoles is a key process whose observation has remained elusive. Here, we introduce a novel mechanism that allows for the controlled stabilization of emergent monopoles and show that magnetic skyrmion strings can be folded into monopoles.
View Article and Find Full Text PDFPiezoelectric devices based on a variety of vibration modes are widely utilized in high-tech fields to make a conversion between mechanical and electrical energies. The excitation of single or coupled vibration modes of piezoelectric devices is mainly related to the structure and property of piezoelectric materials. However, for the generally used piezoelectric materials, e.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
November 2022
The piezoelectric actuator is a kind of actuation device that acts through the inverse piezoelectric effect. Due to advantages of high precision, low power consumption, compact size, and flexible structure design, they have a wide range of applications in optics, robotics, microelectromechanical systems, and so on. Piezoelectric materials are the core materials for piezoelectric actuators.
View Article and Find Full Text PDFA major challenge in topological magnetism lies in the three-dimensional (3D) exploration of their magnetic textures. A recent focus has been the question of how 2D skyrmion sheets vertically stack to form distinct types of 3D topological strings. Being able to manipulate the vertical coupling should therefore provide a route to the engineering of topological states.
View Article and Find Full Text PDFCorilagin is a polyphenol has been identified anti-inflammatory properties. However, the anti-atherosclerotic effects of corilagin are not well understood. Here, we evaluated the anti-atherosclerotic effects and the underlying mechanisms of corilagin.
View Article and Find Full Text PDFDue to the lack of specific genes for rapid detection methods of Cronobacter sakazakii in food samples, whole genome sequence analysis was performed in this investigation using the basic local alignment search tool. Forty-two DNA fragments unique to C. sakazakii were mined, then primers were designed and screened by PCR and loop-mediated isothermal amplification (LAMP).
View Article and Find Full Text PDFThis study aimed to predict the optimal carbon source for higher production of exopolysaccharides (EPS) by Lactobacillus paracasei TD 062, and to evaluate the effect of this carbon source on the production and monosaccharide composition of EPS. We evaluated the EPS production capacity of 20 strains of L. paracasei under the same conditions.
View Article and Find Full Text PDFBackground: Elemental selenium, as a new type of selenium supplement, can be prepared by microorganisms reducing inorganic selenium. In this study, Lactobacillus brevis JLD715 was incubated in broth containing different concentrations of sodium selenite (Na SeO ).
Results: The results showed that the bacterial biomass of L.
Broadband response photodetectors have received great research interest in optical sensing field. Usually, materials with positive photoconductivity (PPC) are general and the lack of negative photoconductivity (NPC) materials limits the application of photoelectric effect, especially in the broadband photodetecting field. Therefore, the finding of NPC materials is very important.
View Article and Find Full Text PDF