Neuromorphic vision hardware, embedded with multiple functions, has recently emerged as a potent platform for machine vision. To realize memory in sensor functions, reconfigurable and non-volatile manipulation of photocarriers is highly desirable. However, previous technologies bear mechanism challenges, such as the ambiguous optoelectronic memory mechanism and high potential barrier, resulting in a limited response speed and a high operating voltage.
View Article and Find Full Text PDFBull Environ Contam Toxicol
June 2023
All pesticides are toxic by nature and pose short- or long-term safety risks to human or the environment, especially when they were used extensively and absence of safety measures. As a new insecticidal active compound with a novel mechanism of action, there is a serious inadequate of information on the hydrolytic behavior of broflanilide in the aqueous environment, as well as its degradation pattern in agricultural soils. In particular, the effects of temperature and pH of the aqueous environment on its hydrolytic behaviors and the dissipation pattern in different types of agricultural soils were still in a dark box.
View Article and Find Full Text PDFRoom-temperature-operating highly sensitive mid-wavelength infrared (MWIR) photodetectors are utilized in a large number of important applications, including night vision, communications, and optical radar. Many previous studies have demonstrated uncooled MWIR photodetectors using 2D narrow-bandgap semiconductors. To date, most of these works have utilized atomically thin flakes, simple van der Waals (vdW) heterostructures, or atomically thin p-n junctions as absorbers, which have difficulty in meeting the requirements for state-of-the-art MWIR photodetectors with a blackbody response.
View Article and Find Full Text PDFTwo-dimensional (2D) infrared photodetectors always suffer from low quantum efficiency (QE) because of the limited atomically thin absorption. Here, we reported 2D black phosphorus (BP)/BiOSe van der Waals (vdW) photodetectors with momentum-matching and band-alignment heterostructures to achieve high QE. The QE was largely improved by optimizing the generation, suppressing the recombination, and improving the collection of photocarriers.
View Article and Find Full Text PDFWith the increasing demand for multispectral information acquisition, infrared multispectral imaging technology that is inexpensive and can be miniaturized and integrated into other devices has received extensive attention. However, the widespread usage of such photodetectors is still limited by the high cost of epitaxial semiconductors and complex cryogenic cooling systems. Here, we demonstrate a noncooled two-color infrared photodetector that can provide temporal-spatial coexisting spectral blackbody detection at both near-infrared and mid-infrared wavelengths.
View Article and Find Full Text PDFWith the development of infrared optoelectronic technology, high responsivity, ultra-low dark current, and high response speed have become important factors of the next generation of infrared photodiodes. However, the minimum thickness of the absorber layer is limited to approximately one or several wavelength lengths to acquire high quantum efficiency, which results in a long transit time of photogenerated carriers. In this work, we propose a photon-trapping structure that uses the skin effect of metals to generate horizontal local modes to enhance the absorption of infrared photodiodes.
View Article and Find Full Text PDFBlackbody-sensitive room-temperature infrared detection is a notable development direction for future low-dimensional infrared photodetectors. However, because of the limitations of responsivity and spectral response range for low-dimensional narrow bandgap semiconductors, few low-dimensional infrared photodetectors exhibit blackbody sensitivity. Here, highly crystalline tellurium (Te) nanowires and two-dimensional nanosheets were synthesized by using chemical vapor deposition.
View Article and Find Full Text PDFLow-symmetry 2D materials with unique anisotropic optical and optoelectronic characteristics have attracted a lot of interest in fundamental research and manufacturing of novel optoelectronic devices. Exploring new and low-symmetry narrow-bandgap 2D materials will be rewarding for the development of nanoelectronics and nano-optoelectronics. Herein, sulfide niobium (NbS ), a novel transition metal trichalcogenide semiconductor with low-symmetry structure, is introduced into a narrowband 2D material with strong anisotropic physical properties both experimentally and theoretically.
View Article and Find Full Text PDFA tetra-coordinate, square planar germanium(IV) cation [(TPFC)Ge](+) (TPFC = tris(pentafluorophenyl)corrole) was synthesized quantitatively by the reaction of (TPFC)Ge-H with [Ph3C](+)[B(C6F5)4](¯). The highly reactive [(TPFC)Ge](+) cation reacted with benzene to form phenyl complex (TPFC)Ge-C6H5 through an electrophilic pathway. The key intermediate, a σ-type germylium-benzene adduct, [(TPFC)Ge(η(1)-C6H6)](+), was isolated and characterized by single-crystal X-ray diffraction.
View Article and Find Full Text PDF