Publications by authors named "Haoming Liang"

is a causal agent of sugarcane Pokkah boeng, an important fungal disease that causes a considerable reduction in yield and sugar content in susceptible varieties of sugarcane worldwide. Despite its importance, the fungal factors that regulate the virulence of this pathogen remain largely unknown. In our previous study, mapping of an insertional mutant defect in virulence resulted in the identification of a cutinase G-box binding protein gene, designated that encodes a C2H2-type transcription factor (TF).

View Article and Find Full Text PDF

Perovskite bandgap tuning without quality loss makes perovskites unique among solar absorbers, offering promising avenues for tandem solar cells. However, minimizing the voltage loss when their bandgap is increased to above 1.90 eV for triple-junction tandem use is challenging.

View Article and Find Full Text PDF

A common approach to assess the nature of energy conversion in a classical fluid or plasma is to compare power densities of the various possible energy conversion mechanisms. A leading research area is quantifying energy conversion for systems that are not in local thermodynamic equilibrium (LTE), as is common in a number of fluid and plasma systems. Here we introduce the "higher-order nonequilibrium term" (HORNET) effective power density, which quantifies the rate of change of departure of a phase space density from LTE.

View Article and Find Full Text PDF

Tuning the composition of perovskites to approach the ideal bandgap raises the single-junction Shockley-Queisser efficiency limit of solar cells. The rapid development of narrow-bandgap formamidinium lead triiodide-based perovskites has brought perovskite single-junction solar cell efficiencies up to 26.1%.

View Article and Find Full Text PDF

Weakly collisional and collisionless plasmas are typically far from local thermodynamic equilibrium (LTE), and understanding energy conversion in such systems is a forefront research problem. The standard approach is to investigate changes in internal (thermal) energy and density, but this omits energy conversion that changes any higher-order moments of the phase space density. In this Letter, we calculate from first principles the energy conversion associated with all higher moments of the phase space density for systems not in LTE.

View Article and Find Full Text PDF

This review focuses on monolithic 2-terminal perovskite-silicon tandem solar cells and discusses key scientific and technological challenges to address in view of an industrial implementation of this technology. The authors start by examining the different crystalline silicon (c-Si) technologies suitable for pairing with perovskites, followed by reviewing recent developments in the field of monolithic 2-terminal perovskite-silicon tandems. Factors limiting the power conversion efficiency of these tandem devices are then evaluated, before discussing pathways to achieve an efficiency of >32%, a value that small-scale devices will likely need to achieve to make tandems competitive.

View Article and Find Full Text PDF